論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
具低交互調節率的自適應偽連續導通模式之單電感雙輸出直流降壓轉換器與具寬輸入範圍之60 V 高壓單電感雙輸出直流降壓轉換器設計 SIDO Buck Converter with Low Cross Regulation Using Adaptive PCCM Control and 60 V High Voltage SIDO Buck Converter Design with Wide Input Range |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
74 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-01-21 |
繳交日期 Date of Submission |
2021-02-01 |
關鍵字 Keywords |
直流降壓轉換器、單電感雙輸出、連續導通模式、寬輸入範圍、交互調節率、偽連續導通模式 CCM, buck converter, PCCM, SIDO, cross regulation, wide input range |
||
統計 Statistics |
本論文已被瀏覽 165 次,被下載 34 次 The thesis/dissertation has been browsed 165 times, has been downloaded 34 times. |
中文摘要 |
近年來,由於鋰電池的快速發展,許多以電池系統為動力之無人水下載具得以商業化,並且讓更多公司與研究機構對海洋進行更深入的研究。為了提高水下載具之性能與操作時間,因此本論文針對電池系統之直流降壓轉換器進行設計與分析。 本論文第一部份提出一具低交互調節率的自適應偽連續導通模式之單電感雙輸出直流降壓轉換器,其架構採用分時多工控制,並使用偽連續導通模式,使電路能夠輸出較大的負載電流,並藉由一模式控制電路以降低交互調節率。本設計輸入範圍為10.8 V 至12 V,輸出電壓為3.3 V 與5 V,在負載電流為500 mA 與500 mA 時效率為82.6%,並使用TSMC 0.18 μm CMOS HV 製程完成下線與量測,量測結果為輸出無法穩定於電壓為3.3 V 與5 V。 本論文第二部分提出一具寬輸入範圍之60 V 高壓單電感雙輸出直流降壓轉換器,其架構採用分時多工控制,並採用連續導通模式,電路效率得以提升。由於60 V 高壓MOS 之VGS 僅有5 V 耐壓。因此,本設計須克服此一製程限制。藉由一電容耦合位準提升器將0 V 至5 V 電壓提升至55 V 至60 V,以驅動60 V 的P型功率電晶體。本設計輸入範圍為48 V 至60 V,輸出電壓為5 V 與12 V,在負載電流為500 mA 與500 mA 時效率為70.15%,本設計目標應用於電動車上之電源管理系統,並使用馬來西亞SilTerra 公司之0.18 μm 60 V BCD 製程完成模擬。 |
Abstract |
Recently, due to the rapid development of Li-ion battery technologies, many autonomous underwater vehicles (AUV) which are powered by battery-based systems have been commercialized. Many companies and research institutes then are able to explore new territories in deep ocean thanks to these AUVs. To improve the efficiency and extend operation time of AUVs powered by batteries, this thesis proposes new DC-DC buck converters which are on of basic circuits of the battery systems. The first part of this thesis demonstrates a single inductor dual output (SIDO) buck converter with low cross regulation using adaptive pseudo continuous conduction mode (PCCM) control. The proposed converter mainly uses the PCCM and time multiplexing approach, which are able to generate a large load current, and reduce cross regulation. The input range of the proposed converter design is 10.8 V to 12 V, the output voltage is 3.3 V to 5 V, and the efficiency is 82.6% given 500 mA load current. The converter is implemented using TSMC 0.18 μm HV CMOS. The measurement on silicon shows that the output can't meet what was expected. The second part of this thesis is focused on a 60 V SIDO Buck Converter design realized using Malaysia SilTerra 0.18 μm 60 V BCD process. This converter adopts time multiplexing control and continuous conduction mode (CCM) to increase the efficiency. Because VGS of the 60 V HV MOS only has 5 V withstand voltage, this design must overcome this process limitation. A capacitively coupled level shifter (CCLS) is used to boost the voltage from 0 V - 5 V to 55 V - 60 V to drive 60 V power PMOS. The input range is 48 V to 60 V, the output voltage is 5 V to 12 V, and the efficiency is 70.15% given a 500 mA load current. The design goal is applied to the power management system on electric vehicles. |
目次 Table of Contents |
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 概論與研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 低壓差線性穩壓器. . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 切換式穩壓器. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 具低交互調節率的自適應偽連續導通模式之單電感雙輸出直 流降壓轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 具寬輸入範圍之60 V 高壓單電感雙輸出直流降壓轉換器. . . 10 1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 具低交互調節率的自適應偽連續導通 模式之單電感雙輸出直流降壓轉換器 13 2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 單電感雙輸出轉換器之分析. . . . . . . . . . . . . . . . . . . . . . . 13 2.3 具低交互調節率的自適應偽連續導通模式之單電感雙輸出直流降壓 轉換器架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 電路設計之理論分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 模式控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 自適應PCCM 控制電路與PWM 控制電路. . . . . . . . . . . 20 2.4.3 三角波及時脈產生器. . . . . . . . . . . . . . . . . . . . . . . 22 2.4.4 電流感測器1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.5 電流感測器2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.6 緩啟動電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.7 位準提升器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 電路模擬結果與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.1 電路模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.2 晶片預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.1 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.2 量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 具寬輸入範圍之60 V 高壓單電感雙 輸出直流降壓轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 直流降壓轉換器之效率分析. . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 切換損耗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 導通損耗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 具寬輸入範圍之60 V 高壓單電感雙輸出直流降壓轉換器架構. . . . 43 3.4 高壓單電感雙輸出直流降壓轉換器電路設計及分析. . . . . . . . . . 44 3.4.1 電容耦合位準提升器. . . . . . . . . . . . . . . . . . . . . . . 44 3.4.2 電流感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 預計規格與電路模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.1 電路模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.2 預計規格與文獻比較. . . . . . . . . . . . . . . . . . . . . . . 50 3.5.3 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1 研究成果與結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 未來研究規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 |
參考文獻 References |
[1] C. Deutsch, L. Moratelli, S. Thuné, J. Kuttenkeuler, and F. Söderling, “Design of an AUV research platform for demonstration of novel technologies,” in Proc. 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pp. 1–8, Jun. 2018. [2] 綠學院 Green Impact Academy, 如何判斷電池技術大突破是世紀大騙局還是真革命?. [Online]. Available: https://greenimpact.cc/zhTW/article/q2re5/ %E5%A6%82%E4%BD%95%E5%88%A4%E6%96%B7%E9%9B%BB%E6% B1%A0%E6%8A%80%E8%A1%93%E5%A4%A7%E7%AA%81%E7%A0% B4%E6%98%AF%E4%B8%96%E7%B4%80%E5%A4%A7%E9%A8%99%E5% B1%80%E9%82%84%E6%98%AF%E7%9C%9F%E9%9D%A9%E5%91%BD. [3] H. Liu, B. Wang, and X. Xiang, “AdventureI: A miniAUV prototype for education and research,” in Proc. 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 349–354, Dec. 2016. [4] MakerPRO, 可充電式鋰電池的原理與應用. [Online]. Available: https://makerpro. cc/2019/03/theprinciplesandapplicationoflithiumionbattery/. [5] RICHTEC, 挑選線姓穩壓器 (LDO). [Online]. Available: https://www.richtek.com/ selectionguide/tw/selectionldo.html. [6] X. Zhang, P.H. Chen, Y. Okuma, K. Ishida, Y. Ryu, K. Watanabe, T. Sakurai, and M. Takamiya, “A 0.6 V input CCM/DCM operating digital buck converter in 40 nm CMOS,” IEEE Journal of SolidState Circuits, vol. 49, no. 11, pp. 2377–2386, Nov. 2014. [7] P.H. Chen, H.C. Cheng, Y.A. Ai, and W.T. Chung, “Automatic modeselected energy harvesting interface with > 80 % power efficiency over 200 nW to 10 mW,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2898–2906, Dec. 2018. [8] K. Lee, C. Chae, G. Cho, and G. Cho, “A PLLbased highstability singleinductor 6channel output DCDC buck converter,” in Proc. 2010 IEEE International Solid State Circuits Conference (ISSCC), pp. 200–201, Feb. 2010. [9] C. Kuan, and H. Lin, “Nearindependently regulated 5output singleinductor DC DC buck converter delivering 1.2W/mm2 in 65nm CMOS,” in Proc. 2012 IEEE In ternational SolidState Circuits Conference (ISSCC), pp. 274–276, Feb. 2012. [10] G.L. Li, Y.C. Chen, Y.T. Chang, C.H. Tsai, and H.S. Chen, “A singleinductor dualoutput DCDC converter with output voltage mode switching,” in Proc. 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–4, Jun. 2012. [11] D. Park, T. Kong, S. Choi, and G. Cho, “An 83% peak efficiency and 1.07W/mm2 power density Single Inductor 4Output DCDC converter with BangBang Zeroth Order Control,” in Proc. 2014 IEEE Asian SolidState Circuits Conference (A SSCC), pp. 61–64, Nov. 2014. [12] M. Jung, S. Park, J. Bang, and G. Cho, “An errorbased controlled singleinductor 10 output DCDC buck converter with high efficiency under light load using adaptive pulse modulation,” IEEE Journal of SolidState Circuits, vol. 50, no. 12, pp. 2825– 2838, Dec. 2015. [13] D. Ma, W.H. Ki, C.Y. Tsui, and P. K. T. Mok, “Singleinductor multipleoutput switching converters with timemultiplexing control in discontinuous conduction mode,” IEEE Journal of SolidState Circuits, vol. 38, no. 1, pp. 89–100, Jan. 2003. [14] Y.H. Lee, Y.Y. Yang, S.J. Wang, K.H. Chen, Y.H. Lin, Y.K. Chen, and C.C. Huang, “Interleaving energyconservation mode (IECM) control in singleinductor dualoutput (SIDO) stepdown converters with 91% peak efficiency,” IEEE Journal of SolidState Circuits, vol. 46, no. 4, pp. 904–915, Apr. 2011. [15] W. Xu, Y. Li, X. Gong, Z. Hong, and D. Killat, “A dualmode singleinductor dual output switching converter with small ripple,” IEEE Transactions on Power Elec tronics, vol. 25, no. 3, pp. 614–623, Mar. 2010. [16] D. Ma, W.H. Ki, and C.Y. Tsui, “A pseudoCCM/ DCM SIMO switching con verter with freewheel switching,” IEEE Journal of SolidState Circuits, vol. 38, no. 6, pp. 1007–1014, Jun. 2003. [17] Q. Liu, X. Wu, M. Zhao, M. Chen, and X. Shen, “Monolithic quasislidingmode controller for SIDO buck converter in PCCM,” in Proc. 2012 IEEE Asia Pacific Conference on Circuits and Systems, pp. 428–431, Dec. 2012. [18] Q. Liu, X. Wu, M. Chen, X. Shen, and P. Pan, “QuasiSM controller for SIDO buck converter with selfadaptive freewheeling current level,” in Proc. 2012 IEEE Inter national Conference on Electron Devices and Solid State Circuit (EDSSC), pp. 1–2, Dec. 2012. [19] S. Maity, and Y. Suraj, “A fixed frequency dualmode DCDC buck converter with fasttransient response and high efficiency over a wide load range,” in Proc. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 415–420, Mar. 2013. [20] 台灣經貿網, 全球電動車產業概況. [Online]. Available: https://info.taiwantrade. com/biznews/%E5%85%A8%E7%90%83%E9%9B%BB%E5%8B%95%E8% BB%8A%E7%94%A2%E6%A5%AD%E6%A6%82%E6%B3%811652582.html. [21] W.H. Chang, J.H. Wang, and C.H. Tsai, “A peakcurrent controlled singleinductor dualoutput DCDC buck converter with a timemultiplexing scheme,” in Proc. 2010 International Symposium on VLSI Design, Automation and Test, Hsin Chu, pp. 331– 334, Apr. 2010. [22] Y. H. Ko, Y. S. Jang, S. K. Han, and S. G. Lee, “Nonloadbalancedependent high ef ficiency singleinductor multipleoutput (SIMO) DCDC converters,” in Proc. 2012 Custom Integrated Circuits Conference, pp. 1–4, Sep. 2012. [23] C.Y. Huang, Y.C. Chen, and C.H. Tsai, “Integrated singleinductor dualoutput DC DC converter with powerdistributive control,” in Proc. 2013 International Sympo sium on NextGeneration Electronics, pp. 33–36, Feb. 2013. [24] R. C.H. Chang, W.C. Chen, C.H. Siao, and H.W. Wu, “Lowcomplexity SIMO buckboost DCDC converter for gigascale systems,” in Proc. 2016 IEEE Interna tional Symposium on Circuits and Systems (ISCAS), pp. 614–617, May 2016. [25] L.N. Liu, C. Chen, X.F. Liao, W.B. Huang, J.C. Mu, and Z.M. Zhu, “A low cross regulation and highefficiency SIDO boost converter with nearthreshold startup,” Microelectronics Journal, vol. 87, no. 2019, pp. 22–32, May 2019. [26] RICHTEC, 降壓轉換器效率之分析. [Online]. Available: https://www.richtek. com/Design%20Support/Technical%20Document/AN005?sc_lang=zhTW. [27] D. Lu, Y. Qian, and Z. Hong, “4.3 An 87%peakefficiency DVScapable single inductor 4output DCDC buck converter with ripplebased adaptive offtime con trol,” in Proc. 2012 IEEE International SolidState Circuits Conference (ISSCC), pp. 82–83, Feb. 2014. [28] A. Salimath, E. Botti, G. Gonano, P. Cacciagrano, D. L. Brambilla, T. Barbieri, F. Maloberti, and E. Bonizzoni, “An 86% efficiency, wideV in SIMO DC–DC con verter embedded in a carradio IC,” IEEE Transactions on Circuits and Systems I, vol. 66, no. 9, pp. 3598–3609, Sep. 2019. [29] T.J. Lee, C.K. Wang, and C.C. Wang, “4.15 W SIDO buck converter with low cross regulation using adaptive PCCM control,” in Proc. 2020 2nd International Conference on Smart Power Internet Energy Systems (SPIES), pp. 442–445, Sep. 2020. [30] M. Jung, S. Park, J. Bang, D. Park, S. Shin, and G. Cho, “12.5 An errorbased con trolled singleinductor 10output DCDC buck converter with high efficiency at light load using adaptive pulse modulation,” in Proc. 2015 IEEE International SolidState Circuits Conference (ISSCC), pp. 1–3, Feb. 2015. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |