Responsive image
博碩士論文 etd-0013119-151813 詳細資訊
Title page for etd-0013119-151813
論文名稱
Title
濁水溪口至新虎尾溪口沿岸底棲魚類群聚的時空變化
Spatiotemporal variation of the benthic fish communities in the coastal waters from Zhuoshui Estuary to Xinhuwei Estuary in Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-28
繳交日期
Date of Submission
2019-01-13
關鍵字
Keywords
黃金鰭䱛、雲林近岸海域、濁水溪口、鹽度、新虎尾溪口、魚類群聚、海鯰
fish assemblages, Yunlin coastal water, Zhoushui estuary, Xinhuwei estuary, sea catfish, Chrysochir aureus, salinity
統計
Statistics
本論文已被瀏覽 5894 次,被下載 0
The thesis/dissertation has been browsed 5894 times, has been downloaded 0 times.
中文摘要
  魚類群聚會受海域環境因子的更迭而產生時空變化。雲林縣麥寮沿海位於濁水溪口及新虎尾溪口間,而乾濕分明的亞熱帶氣候使海域環境增添季節波動,為了解此海域環境的時空變化與底棲魚類群聚關聯,本研究從2012年3月至2013年12月間於濁水溪口至新虎尾溪口,以漁船底拖網進行一年四季的樣本採集。結果顯示,新虎尾溪口的魚類物種數、魚類豐度及生物量皆顯著高於濁水溪口及近岸測站。而多維尺度分析及集群分析皆顯示,本海域的底棲魚類群聚可區分成近岸群及河口群,而分群結果主要受到四種魚種的豐度分布不均影響。濁水溪口及新虎尾溪口之底棲魚類豐度前二優勢種為海鯰spp. (Arius spp.)及布氏鬚鰨 (Paraplagusia blochii),而海鯰的豐度百分比可超過50%,於新虎尾溪口甚至可高達74%,為海鯰高度優勢之物種結構。近岸測站的物種結構相較於兩河口均勻,海鯰的平均豐度比例較低僅達19%,並且第二、第三優勢魚種為黃金鰭䱛 (Chrysochir aureus)以及線紋鰻鯰 (Plotosus lineatus),與兩河口相異。Spearman相關性分析及CCA分別指出,海鯰與布氏鬚鰨的豐度和鹽度呈負相關,使兩者常棲息於近河口海域,而黃金鰭䱛及線紋鰻鯰則偏好出現於低溫高鹽的近岸海域。然於八月中濁水溪口流量較高,近岸測站的鹽度下降,進而海鯰的比例升高而黃金鰭䱛下降,使八月近岸測站的魚類組成與兩河口類似,而被歸類於河口群中。
Abstract
The variations of estuarine and coastal fish assemblages have strong correlation with environmental factors. Yunlin coastal water is located between Zhoushui River and Xinhuwei River, and the humid subtropical climate causes the significantly seasonal variation of estuarine ecosystem. In order to clarify the relationship between fish species composition and environmental parameters in a highly changeable estuary, demersal fish assemblages were conducted in coastal waters around Zhuoshui River and Xinhuwei River estuarine system from 2012 to 2013 by local commercial trawler. The highest species number and fish density were recorded in Xinhuwei estuary. According to the result of group average clustering analysis and MDS, the fish assemblages were separated into two distinct groups, namely estuarine and Inshore groups. The uneven distribution of four species caused the clustering results. Marine catfish, Arius spp. which the ratio of abundance was higher over 50% and even up to 74% in Xinhuwei estuary and tonguefish, Paraplagusia blochii were dominant in estuarine area. In inshore site, marine catfish was also the most dominant species, but the ratio only reached up to 19% that species composition was rather even. Additionally, reeve's croaker, Chrysochir aureus and eel catfish, Plotosus lineatus also aggregated in inshore site. The results of Spearman’s correlation and CCA revealed that the abundance of Arius spp. and P. blochii were negative correlations with salinity occurred their dominance was higher in estuary. In contrast, C. aureus and P. lineatus preferred low water temperature and high salinity inshore environments. However, the flow discharge of Zhoushui River was significantly higher in August performed the low salinity environments in whole coastal water. The fluctuation of salinity raised up the proportion of Arius spp. while lessening the proportion of C. aureus. Salinity was the most importantly abiotic factor shaping the fish assemblages in the adjacent waters off the Zhuoshui and Xinhuwei River, central western Taiwan.
目次 Table of Contents
論文審定書 .............................................................................................................I
誌謝 ....................................................................................................................... II
摘要 ...................................................................................................................... III
Abstract ............................................................................................................... IV
目錄 ...................................................................................................................... VI
一、 前言 ............................................................................................................. 1
1-1 河口生態系統 ......................................................................................... 1
1-2 濁水溪口南岸簡介 ................................................................................. 2
1-3 魚類群聚與環境因子關聯 ..................................................................... 3
1-4 研究動機與目的 ..................................................................................... 4
二、 材料與方法 ................................................................................................. 5
2-1 研究時間與地點 ......................................................................................... 5
2-2 樣品處理 ..................................................................................................... 6
2-2-1 水文、水質資料 ........................................................................... 6
2-2-2 底棲魚類樣品 ............................................................................... 6
2-3 數據分析 ...................................................................................................... 8
2-3-1 生物數據處理 ............................................................................... 8
2-3-2 環境因子與優勢物種相關性分析 ............................................... 8
2-4 生物多樣性指數分析 .................................................................................. 8
2-5 多變量統計分析 ........................................................................................ 11
三、 結果 ........................................................................................................... 12
3-1 環境因子 ............................................................................................... 12
3-1-1 溫度 ............................................................................................. 12
3-1-2 鹽度 ............................................................................................. 12
3-1-3 溶氧 ............................................................................................. 12
3-1-4 透明度 ......................................................................................... 13
3-1-5 濁度 ............................................................................................. 13
3-1-6 懸浮固體 ..................................................................................... 13
3-1-7 pH 值 ........................................................................................... 14
3-1-8 生化需氧量 ................................................................................. 14
3-1-9 硝酸鹽類 ..................................................................................... 14
3-1-10 亞硝酸鹽類 ................................................................................. 14
3-1-11 氨氮 ............................................................................................. 15
3-1-12 磷酸鹽類 ..................................................................................... 15
3-1-13 矽酸鹽 ......................................................................................... 15
3-1-14 葉綠素α .................................................................................... 16
3-2 底棲魚類物種數、豐度、生物量時空變化 ....................................... 17
3-2-1 物種數 ......................................................................................... 17
3-2-2 豐度 ............................................................................................. 17
3-2-3 生物量 ......................................................................................... 18
3-3 優勢魚種 ............................................................................................... 18
3-3-1 豐度優勢種 ................................................................................. 18
3-3-2 生物量優勢種 ............................................................................. 19
3-4 群聚生物多樣性指數 ........................................................................... 20
3-5 ABC 曲線及W 統計量 ........................................................................ 21
3-6 底棲魚類群集組成 ............................................................................... 21
3-6-1 MDS 及Cluster 分析 .................................................................. 21
3-6-2 SIMPER ....................................................................................... 22
3-7 分群之環境因子比較 ........................................................................... 22
3-8 相關分析結果 ....................................................................................... 23
3-9 CCA 分析結果 ...................................................................................... 23
3-10 優勢種生物學 ....................................................................................... 24
3-10-1 海鯰spp. ..................................................................................... 24
3-10-2 布氏鬚鰨 ..................................................................................... 24
3-10-3 黃金鰭䱛 ..................................................................................... 25
四、 討論 ........................................................................................................... 26
4-1 魚類豐度、生物量測站差異 ............................................................... 26
4-2 海域環境的時空變化 ........................................................................... 26
4-3 魚類群聚結構的時空差異 ................................................................... 27
4-4 海鯰高度優勢之探討 ........................................................................... 28
4-5 優勢魚種體長/體重資訊 ...................................................................... 30
4-5-1 海鯰spp. ..................................................................................... 30
4-5-2 布氏鬚鰨 ..................................................................................... 31
4-5-3 黃金鰭䱛 ..................................................................................... 31
4-5-4 優勢魚種棲地利用模式 ............................................................. 33
五、 結論 ........................................................................................................... 34
六、 文獻 ........................................................................................................... 35
七、 圖次 ........................................................................................................... 42
八、 表次 ........................................................................................................... 60
九、 附錄 ........................................................................................................... 72
參考文獻 References
A. 英文期刊論文與書籍

Barbieri, L.R., dos Santos, R.P. & Andreata, J.V. (1992) Reproductive biology of the marine catfish, Genidens genidens (Siluriformes, Ariidae), in the Jacarepaguá Lagoon system, Rio de Janeiro, Brazil. Environmental Biology of Fishes, 35, 23-35.
Barletta, M. & Blaber, S.J. (2007) Comparison of fish assemblages and guilds in tropical habitats of the Embley (Indo-West Pacific) and Caeté (Western Atlantic) estuaries. Bulletin of Marine Science, 80, 647-680.
Barletta, M., Barletta-Bergan, A., Saint-Paul, U. & Hubold, G. (2003) Seasonal changes in density, biomass, and diversity of estuarine fishes in tidal mangrove creeks of the lower Caeté Estuary (northern Brazilian coast, east Amazon). Marine Ecology Progress Series, 256, 217-228.
Barletta, M., Barletta‐Bergan, A., Saint‐Paul, U. & Hubold, G. (2005) The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of fish biology, 66, 45-72.
Barletta, M., Amaral, C., Corrêa, M., Guebert, F., Dantas, D., Lorenzi, L. & Saint‐Paul, U. (2008) Factors affecting seasonal variations in demersal fish assemblages at an ecocline in a tropical–subtropical estuary. Journal of Fish Biology, 73, 1314-1336.
Binur, R. & Ohee, H.L. (2012) The Diversity of Freshwater Fishes in Haya, Mamberamo-Papua. Jurnal Natural, 9
Blaber, S., Brewer, D. & Salini, J. (1995) Fish communities and the nursery role of the shallow inshore waters of a tropical bay in the Gulf of Carpentaria, Australia. Estuarine, Coastal and Shelf Science, 40, 177-193.
Boehlert, G.W. & Mundy, B.C. (1988) Roles of behavioral and physical factors in larval and juvenile fish recruitment to estuarine nursery areas. American Fisheries Society Symposium (ed by, pp. 1-67.
Brash, J.M. & Fennessy, S.T. (2005) A preliminary investigation of age and growth of Otolithes ruber from KwaZulu-Natal, South Africa. Western Indian Ocean Journal of Marine Science, 4, 21-28.
Burford, M., Revill, A., Palmer, D., Clementson, L., Robson, B. & Webster, I. (2011) River regulation alters drivers of primary productivity along a tropical river-estuary system. Marine and Freshwater Research, 62, 141-151.
Burford, M.A., Webster, I.T., Revill, A.T., Kenyon, R.A., Whittle, M. & Curwen, G. (2012) Controls on phytoplankton productivity in a wet–dry tropical estuary. Estuarine, Coastal and Shelf Science, 113, 141-151.
Carpenter, K.E. & Niem, V.H. (2001) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. FAO Library.
Chowdhury, M.S.N., Hossain, M.S., Das, N.G. & Barua, P. (2011) Environmental variables and fisheries diversity of the Naaf River Estuary, Bangladesh. Journal of Coastal Conservation, 15, 163-180.
Chu, W.-S., Hou, Y.-Y., Ueng, Y.-T. & Wang, J.-P. (2012) Correlation between the length and weight of Arius maculatus off the southwestern coast of Taiwan. Brazilian Archives of Biology and Technology, 55, 705-708.
Chu, W.-S., Hou, Y.-Y., Ueng, Y.-T., Wang, J.-P. & Chen, H.-C. (2011) Estimates of age, growth and mortality of spotted catfish, Arius maculatus (Thunberg, 1792), off the Coast of Yunlin, Southwestern Taiwan. African Journal of Biotechnology, 10, 15416-15421.
Claridge, P., Potter, I. & Hardisty, M. (1986) Seasonal changes in movements, abundance, size composition and diversity of the fish fauna of the Severn Estuary. Journal of the Marine Biological Association of the United Kingdom, 66, 229-258.
Clarke, K. & Warwick, R. (1994) Similarity-based testing for community pattern: the two-way layout with no replication. Marine Biology, 118, 167-176.
Clarke, K. & Gorley, R. (2006) Primer v6. 1.10: user manual/tutorial PRIMER-E. Plymouth Routines in Multivariate Ecological Research, Plymouth,
Coates, D. (1988) Length‐dependent changes in egg size and fecundity in females, and brooded embryo size in males, of fork‐tailed catfishes (Pisces: Ariidae) from the Sepik River, Papua New Guinea, with some implications for stock assessments. Journal of Fish Biology, 33, 455-464.
Cyrus, D.P. & Blaber, S.J.M. (1992) Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution. Estuarine, Coastal and Shelf Science, 35, 545-563.
Dadzie, S. (2007) Vitellogenesis, oocyte maturation pattern, spawning rhythm and spawning frequency in Otolithes ruber (Schneider, 1801)(Sciaenidae) in the Kuwaiti waters of the Arabian Gulf. Scientia Marina, 71, 239-248.
Dantas, D., Barletta, M., Costa, M., Barbosa‐Cintra, S., Possatto, F., Ramos, J., Lima, A. & Saint‐Paul, U. (2010) Movement patterns of catfishes (Ariidae) in a tropical semi‐arid estuary. Journal of Fish Biology, 76, 2540-2557.
de Azevedo, M.C.C., Araújo, F.G., da Cruz-Filho, A.G., Pessanha, A.L.M., de Araújo Silva, M. & Guedes, A.P.P. (2007) Demersal fishes in a tropical bay in southeastern Brazil: partitioning the spatial, temporal and environmental components of ecological variation. Estuarine, Coastal and Shelf Science, 75, 468-480.
Fennessy, S. (2000) Aspects of the biology of four species of Sciaenidae from the east coast of South Africa. Estuarine, coastal and shelf science, 50, 259-269.
Froese, R. & Pauly, D. (2016) FishBase. Worldwide web electronic publication. 2014. In:
Fulton, E., Smith, A., Webb, H. & Slater, J. (2004) Ecological indicators for the impacts of fishing on non-target species, communities and ecosystems: review of potential indicators. Hobart, Tas.//Canberra, ACT, CSIRO Div. of Marine Research//Australian Fisheries Management Authority.
Grange, N., Whitfield, A., De Villiers, C. & Allanson, B. (2000) The response of two South African east coast estuaries to altered river flow regimes. Aquatic Conservation: Marine and Freshwater Ecosystems, 10, 155-177.
Hajisamae, S. & Chou, L. (2003) Do shallow water habitats of an impacted coastal strait serve as nursery grounds for fish? Estuarine, Coastal and Shelf Science, 56, 281-290.
Harrison, T. & Whitfield, A. (2006) Temperature and salinity as primary determinants influencing the biogeography of fishes in South African estuaries. Estuarine, Coastal and Shelf Science, 66, 335-345.
Hossain, M.S., Das, N.G., Sarker, S. & Rahaman, M.Z. (2012) Fish diversity and habitat relationship with environmental variables at Meghna river estuary, Bangladesh. The Egyptian Journal of Aquatic Research, 38, 213-226.
Jalal, K., Azfar, M.A., John, B.A., Kamaruzzaman, Y. & Shahbudin, S. (2012) Diversity and community composition of fishes in tropical estuary Pahang Malaysia. Pakistan Journal of Zoology, 44, 181-187.
Kamukuru, A.T. & Tamatamah, R.A. (2014) The Distribution, Biological Characteristics and Vulnerability of the Giant Sea Catfish, Arius thalassinus (Rüppell, 1837), to Fishing at Mafia Island, Tanzania. Western Indian Ocean Journal of Marine Sciences, 163.
King, M. (2013) Fisheries biology, assessment and management. John Wiley & Sons.
Kuo, S.-R. & Shao, K.-T. (1999) Species composition of fish in the coastal zones of the Tsengwen Estuary, with descriptions of five new records from Taiwan. ZOOLOGICAL STUDIES-TAIPEI-, 38, 391-404.
Lal Mohan, R. (1981) An illustrated synopsis of the fishes of the family Sciaenidae of India. Indian Journal of Fisheries, 28, 1-24.
Liu, J., Liu, C., Xu, K., Milliman, J., Chiu, J., Kao, S. & Lin, S. (2008) Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256, 65-76.
Liu, J.T., Kao, S.-J., Huh, C.-A. & Hung, C.-C. (2013) Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of Marine Science, 5, 47-68.
Lloyd, M., Zar, J.H. & Karr, J.R. (1968) On the calculation of information-theoretical measures of diversity. American Midland Naturalist, 257-272.
Mann, K.H. (1982) Ecology of coastal waters: a systems approach. Univ of California Press.
Margalef, R. (1958) Information theory in ecology. General Systems Bulletin 3: 36–71, University of Louisville. Systems Science Institute, Louisville, Kentucky,
Martino, E.J. & Able, K.W. (2003) Fish assemblages across the marine to low salinity transition zone of a temperate estuary. Estuarine, Coastal and Shelf Science, 56, 969-987.
Matveev, V. & Steven, A. (2014) The effects of salinity, turbidity and flow on fish biomass estimated acoustically in two tidal rivers. Marine and Freshwater Research, 65, 267-274.
Mazlan, A., Abdullah, S., Shariman, M. & Arshad, A. (2008) On the biology and bioacoustic characteristic of spotted catfish Arius maculatus (Thunberg 1792) from the Malaysian Estuary. Res. J. Fish. Hydrobiol, 3, 63-70.
Milliman, J.D. & Syvitski, J.P. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100, 525-544.
Mukherjee, S., Chaudhuri, A., Kundu, N., Mitra, S. & Homechaudhuri, S. (2013) Comprehensive analysis of fish assemblages in relation to seasonal environmental variables in an estuarine river of Indian Sundarbans. Estuaries and coasts, 36, 192-202.
Nixon, S., Oviatt, C., Frithsen, J. & Sullivan, B. (1986) Nutrients and the productivity of estuarine and coastal marine ecosystems. Journal of the Limnological Society of Southern Africa, 12, 43-71.
Pan, C.-W., Chuang, Y.-L., Chou, L.-S., Chen, M.-H. & Lin, H.-J. (2016) Factors governing phytoplankton biomass and production in tropical estuaries of western Taiwan. Continental Shelf Research, 118, 88-99.
Pielou, E.C. (1966) The measurement of diversity in different types of biological collections. Journal of theoretical biology, 13, 131-144.
Simpson, E.H. (1949) Measurement of diversity. nature, 163, 688.
Tuck, I.D., Hall, S.J., Robertson, M.R., Armstrong, E. & Basford, D.J. (1998) Effects of physical trawling disturbance in a previously unfished sheltered Scottish sea loch. Marine Ecology Progress Series, 227-242.
Ware, D.M. & Thomson, R.E. (2005) Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. science, 308, 1280-1284.
Warwick, R. (1986) A new method for detecting pollution effects on marine macrobenthic communities. Marine biology, 92, 557-562.
Yáñez-Arancibia, A. & Lara-Domínguezs, A.L. (1988) Ecology of three sea catfishes (Ariidae) in a tropical coastal ecosystem–Southern Gulf of Mexico. Marine Ecology Progress Series, 215-230.

B. 中文期刊論文與書籍

中坊徹次 (2000) 日本産魚類検索。全種の同定。
方天熹、羅文增、蕭世輝、邵廣昭、周蓮香 (2014) 離島式基礎工業區石化工業綜合區開發案環境監測報告,一零二年第四季報告,第四部分 海域水質與生態調查監測作業。國立台灣海洋大學。
方品仁 (2015) 2010-2012 年間東海底棲性魚類群聚之時空變化。臺灣大學漁業科學研究所學位論文。
王玠文 (2014) 臺灣西南海域黃金鰭䱛及紅牙䱛之年齡與成長。國立東華大學海洋生物性及演化研究所碩士論文。
成功大學水工試驗所 (2014) 雲林離島式基礎工業區開發計畫施工期間環境監測 102 年第 4 季報告。經濟部工業局。
李杰 (2013) 潮汐機制影響下濁水溪河口懸浮顆粒特性之變化。國立中山大學海下科技暨應用海洋物理研究所碩士論文。
沈世傑 (1993) 台灣魚類誌。國立台灣大學動物系。台北市,960。
周瑋珊、江文山、賴志峰、陳平、余進利、陳宣汶、陳添水、劉弼仁、薛美莉 (2013) 雲林沿海近 20 年環境水質變化解析。第35屆海洋工程研討會論文集。
周蓮香、陳孟仙、林幸助 (2015) 雲林沿海中華白海豚與河口生態系研究計畫。台塑關係企業。
周蓮香 (2017) 雲林沿海中華白海豚族群監測計畫105年期末報告。台塑關係企業。
林儀禎 (2012) 台灣西部中華白海豚食餌漁獲量的長期變動。國立中山大學海洋事務研究所。
邵廣昭 (1999) 海洋生態學。明文,台北。
邵廣昭 (2018) 臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw, (2018-5-17)。
倪小媛 (2018) 臺灣西南海域黃金鰭䱛及紅牙䱛之生殖生物學。國立中山大學海洋生物研究所碩士論文。
張妮娜 (2009) 2008 年夏季東海底棲性魚類多樣性及海洋生物與環境之相關性. 國立臺灣大學海洋研究所學位論文。
莫顯蕎、翁進坪、黃寶貴、翁平勝 (2001) 濁水溪河口海域石首魚類之分佈與漁業管理。行政院農委會漁業署九十年度試驗研究計畫研究報告。
許碧瑜 (2010) 雲林海域桁桿式蝦拖網漁獲生物種類組成之時序變化. 國立中山大學海洋生物科技暨資源學系研究所碩士論文。
陳俊偉 (2012) 枯、豐水季濁水溪河口三角洲及潮坪沉積物傳輸型態和來源的硏究。國立中山大學海洋地質及化學研究所碩士論文。
楊仁凱 (2010) 沖淡水中粒徑結構之時空變化。國立中山大學海洋地質及化學研究所碩士論文。
經濟部水資源局 (2012) 台灣水文年報。經濟部水利署台北辦公室,台北市。
經濟部水資源局 (2013) 台灣水文年報。經濟部水利署台北辦公室,台北市。
廖竣 (2016) 臺灣周遭淺海至深海底棲魚類群聚組成特性. 臺灣大學漁業科學研究所學位論文。
劉又瑜 (2016) 台灣石首魚科 (Sciaenidae) 分類之重新檢視及其在雲林沿海之季節變化。國立中山大學海洋生物科技暨資源學系研究所碩士論文。
德眾工程顧問股份有限公司 (2008) 98年度新虎尾溪現地處理規劃細部設計及支流排水調查計畫-期末報告。雲林縣環境保護局,1-178。
潘靖汶 (2015) 雲林沿海浮游藻類生產力與生態系食物網模式建構。國立中興大學生命科學系所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code