博碩士論文 etd-0011116-000739 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 陳盈翰(Ying-Han Chen) 電子郵件信箱 E-mail 資料不公開
畢業系所 材料與光電科學學系研究所(Materials and Optoelectronic Science)
畢業學位 博士(Ph.D.) 畢業時期 104學年第1學期
論文名稱(中) 鋯銅基金屬玻璃之潛變鬆弛與界面控制變形行為
論文名稱(英) Time-dependent and interface-controlled deformation behavior of Zr-Cu metallic glasses
檔案
  • etd-0011116-000739.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:3 年後公開 (2019-01-13 公開)

    電子論文:使用者自訂權限:校內 3 年後、校外 3 年後公開

    論文語文/頁數 英文/174
    統計 本論文已被瀏覽 5332 次,被下載 5 次
    摘要(中) 在本論文中,利用奈米壓痕技術去探討殘留應力對於塊狀金屬玻璃潛變之影響,為了在塊狀金屬玻璃中產生殘留應力,所使用的方法是將塊狀金屬玻璃彎曲限制在金屬圈中,而被彎曲的塊狀金屬玻璃試片其上半部就會存在張應力而下半部就會存在壓應力,經過奈米壓痕潛變測試後可得知,在張應力存在部分其潛變應變速率會明顯大於壓應力的部分,此現象可經由殘留應力對試片結構影響來解釋。
    研究也針對鋯銅非晶薄膜、鋯奈米晶薄膜和鋯銅/鋯多層膜進行奈米壓痕潛變的研究,在研究中發現了潛變速率會因為施加應力的改變而發生了交叉現象,跟鋯銅非晶薄膜比起來鋯奈米晶薄膜擁有較高的應力靈敏度,這是因為鋯奈米晶薄膜擁有差排在不同滑移系統下的變形機制和晶界滑移的變形機制,而相對於單層薄膜,鋯銅/鋯多層膜表現出較高的潛變應變速率這是因為眾多界面的貢獻所造成。
    最後,利用物理濺鍍製備鋯銅非晶薄膜/鋯奈米晶薄膜的多層膜試片(每層500 nm厚),並且利用聚焦離子束去加工製備出擁有傾斜界面的奈米柱,這些傾斜界面奈米柱可以去探討壓縮應力方向與界面之間在不同的角度關係下的現象,實驗的結果與分子動力學的模擬和Tsai-Hill模型去針對楊氏模數和降伏應力做比較,可得知鋯銅非晶薄膜/鋯奈米晶薄膜的界面剪切模數和界面強度分別是25 GPa和1.0 GPa,透過分子動力學的模擬可了解奈米柱在彈性-塑性的變形現象和模式,實驗的結果與模擬的計算結果相當吻合。
    關鍵字:金屬玻璃、多層膜、機械性質、潛變、界面
    摘要(英) In this research, the effect of residual stresses on the time-dependent deformation of a bulk metallic glass is investigated by the nanoindentation technique. In order to induce residual stresses, a beam sample was elastically bent and constrained in a steel ring. The upper side of the beam experiences the tensile residual stress, the lower side the compressive residual stress, and the central line nearly nil stress. Afterward, nanoindentation creep tests are performed on this stressed sample at room temperature. The creep rate is apparently higher on the tensile side, and remains lower and nearly fixed on the compressive side. The behavior can be explained by the joint influence of the residual stress and indention loading.
    We also attempt to investigate the nanoindentaion time-dependent relaxation tests were performed on the amorphous ZrCu, nanocrystalline Zr and multilayer ZrCu/Zr thin films aiming to explore the different time-dependent behaviors of these materials under the similar load level at room temperature. There appears an interesting crossing phenomenon of the creep rate as a function of applied stress. In comparison with the ZrCu thin films, the Zr film shows higher load/stress sensitivity for the creep response, suggesting the operating of dislocation creep along various slip systems and some minor grain-boundary-sliding creep mechanism. Multilayered ZrCu/Zr thin films also exhibit higher creep response due to the presence of numerous interfaces.
    Eventually, an amorphous-ZrCu/crystalline-Zr nanolaminate (500 nm each layer) was initially synthesized using sputter deposition and, then, fabricated into micropillar samples using focus ion beam machining with the amorphous-crystalline (a-c) interfaces inclined to the pillar axis. These pillars were, subsequently, tested in compression in order to study the response of a-c interfaces to the applied shear stress, and further compared with the one that tested with their a-c interfaces normal to the compressive direction. Comparison was made on the experimental, MD and Tsai-Hill data on modulus and yield strength as a function of the angle φ with respect to the loading axis. The extracted interface shear modulus and interface strength for the current ZrCu/Zr is about 25 GPa and 1.0 GPa, respectively. Molecular dynamic simulations are also carried out to reveal the elastic-plastic behavior and, in particular, the deformation mode, of the pillars. The computed results are in excellent agreement with the experimental observations.
    Keywords: Metallic glasses, Multilayer, Mechanical properties, Creep, Interface
    關鍵字(中)
  • 多層膜
  • 潛變
  • 界面
  • 金屬玻璃
  • 機械性質
  • 關鍵字(英)
  • Metallic glasses
  • Mechanical properties
  • Multilayer
  • Interface
  • Creep
  • 論文目次 論文審定書 i
    致謝 ii
    中文摘要 iv
    Abstract v
    Content vii
    List of tables xi
    List of figures xii
    Chapter 1 Introduction 1
    1.1 Amorphous alloys 1
    1.2 The evolution of amorphous alloys and bulk metallic glasses (BMGs) 2
    1.3 The development of thin film metallic glasses (TFMGs) 3
    1.4 Motivation 5
    Chapter 2 Background and literature review 8
    2.1 The evolution of fabrication methods 8
    2.2 The characters and forming conditions of amorphous alloys 8
    2.2.1 Glass forming ability 8
    2.2.2 The empirical rules for forming amorphous alloys 11
    2.3 Sputtering deposition process 12
    2.3.1 Introduction of sputtering 12
    2.3.2 Nucleation and growth of sputter-deposited films 13
    2.3.3 Amorphous film growth 13
    2.4 The characterization of amorphous alloys 13
    2.4.1 Mechanical properties 14
    2.4.2 Magnetic properties 14
    2.4.3 Chemical properties 14
    2.5 The deformation mechanisms of metallic glasses 15
    2.6 Thin film materials 16
    2.6.1 Mechanical properties of multilayer thin films 16
    2.6.2 Applications of thin film metallic glasses 18
    2.7 Nanoindentaion creep tests 19
    2.8 Microscale mechanical properties 21
    2.8.1 Introduction to microcompression tests 22
    2.8.2 Microscale mechanical properties on monolithic amorphous micropillars 26
    2.8.3 Microscale mechanical properties on multilayer micropillars 27
    2.9 Focused ion beam (FIB) 29
    2.9.1 Introduction to FIB 29
    2.9.2 Ion induced damage 30
    2.10 Nanoscale tensile tests 31
    Chapter 3 Experimental procedures 34
    3.1 Raw materials 34
    3.2 Substrate preparation 34
    3.3 Sample preparation by sputtering 35
    3.4 Materials characterization 36
    3.4.1 X-ray diffraction (XRD) 36
    3.4.2 SEM and EDS analyses 36
    3.5 Nanoindention tests 36
    3.6 Nanoindention creep tests 37
    3.7 Microcompression tests 37
    3.7.1 Perparation for microcompression samples 37
    3.7.2 Microcompression tests using nanoindentation system 38
    3.8 Simulation 38
    Chapter 4 Results and discussions 40
    4.1 Effect of residual stresses on nanoindentation creep behavior of Zr-based BMG 40
    4.1.1 Sample preparations 40
    4.1.2 The parameters of nanoindentaion creep 40
    4.1.3 Bending properties of ZrAlTiCuNi BMG beam sample 41
    4.1.4 Time-dependent deformation behavior of bent ZrAlTiCuNi BMG beam sample 41
    4.2 Nanoindentation creep behavior of amorphous ZrCu, nanocrystalline Zr and multilayers thin films 46
    4.2.1 Sample preparations 46
    4.2.2 The parameters of nanoindentaion creep 46
    4.2.3 EDS and XRD analyses 47
    4.2.4 Mechanical properties of amorphous ZrCu and nanocrystalline Zr 47
    4.2.5 Time-dependent deformation behavior of amorphous ZrCu and nanocrystalline Zr 48
    4.2.6 Time-dependent deformation behavior of ZrCu/Zr multilayer composites 52
    4.3 Mechanical properties of amorphous ZrCu/crystalline Zr multilayers with inclined interfaces 54
    4.3.1 Experimetal observations 54
    4.3.2 Simulation findings 56
    4.3.3 Comparison with Tsai-Hill composite model 57
    4.3.4 On the interface strength 59
    4.4 Extended elastic region in nanocrystalline metals under nano-tension testing 59
    4.4.1 XRD analyses 59
    4.4.2 Nano-tension tests 60
    4.4.3 MD simulation results 62
    4.4.4 Ga+ damage during FIB 64
    Chapter 5 Conclusions 66
    References 68-76
    Tables 77-79
    Figures 80-154
    參考文獻 [1] A. C. Lund, C. A. Schuh, J. Appl. Phys., 95 (2004) 4815-4822.
    [2] A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Nat. Mater., 2 (2003) 661-663.
    [3] A. Inoue, Acta Mater., 48 (2000) 279-306.
    [4] N. H. Pryds, Mater. Sci. Eng. A, 375 (2004) 186-193
    [5] W. L. Johnson, MRS Bull., 24 (1999) 42-56.
    [6] W. Klement, R. H. Willens, P. Duwez, Nature, 187 (1960) 869-870.
    [7] H. S. Chen, D. Turnbull, J. Chem. Phys., 48 (1968) 2560-2571.
    [8] H. S. Chen, D. Turnbull, Acta Metall. Mater., 17 (1969) 1021-1031.
    [9] H. S. Chen, C. E. Miller, Rev. Sci. Instrum., 41 (1970) 1237-1238.
    [10] H. S. Chen, Acta Metall. Mater., 22 (1974) 1505-1511.
    [11] H. H. Liebermann, C. D. Graham, Ieee T Magn, 12 (1976) 921-923.
    [12] A. Inoue, T. Zhang, T. Masumoto, Mater. T. JIM., 31 (1990) 425-428.
    [13] A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto, Mater. T. JIM., 34 (1993)
    351-358.
    [14] A. Inoue, T. Zhang, T. Masumoto, Mater. T. JIM, 31 (1990) 177-183
    [15] H. Ma, L. L. Shi, J. Xu, Y. Li, E. Ma, Appl. Phys. Lett., 87 (2005) 181915.
    [16] R. B. Schwarz, W. L. Johnson, Phys. Rev. Lett., 51 (1983) 415-418.
    [17] E. J. Cotts, W. J. Meng, W. L. Johnson, Phys. Rev. Lett., 57 (1986) 2295-2298.
    [18] Q. M. Chen, Y. D. Fan, H. D. Li, Mater. Lett., 6 (1988) 311-315.
    [19] G. Vonminnigerode, A. Regenbrecht, K. Samwer, Z Phys. Chem. Neue. Fol, 157 (1988)
    197-201.
    [20] A. Regenbrecht, G. Vonminnigerode, K. Samwer, Z Phys. B Con. Mat., 79 (1990) 25-31.
    [21] J. Dudonis, R. Brucas, A. Miniotas, Thin Solid Films, 275 (1996) 164-167.
    [22] Y. D. Liu, S. Hata, K. Wada, A. Shimokohbe, Jpn J. Appl. Phys., 40 (2001)5382-5388.
    [23] S. Suresh, T. G. Nieh, B. W. Choi, Scripta Mater., 41 (1999) 951-957.
    [24] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos, S. Suresh, Acta Mater., 48
    (2000) 2277-2295.
    [25] S. H. Hong, K. S. Kim, Y. M. Kim, J. H. Hahn, C. S. Lee, J. H. Park, Compos. Sci.
    Technol., 65 (2005) 1401-1408.
    [26] T. G. Nieh, J. Wadsworth, Scripta Mater., 44 (2001) 1825-1830.
    [27] J. Schroers, Q. Pham, A. Desai, J. Microelectromech S., 16 (2007) 240-247.
    [28] M. C. Liu, J. C. Huang, H. S. Chou, Y. H. Lai, C. J. Lee, T. G. Nieh, Scripta Mater., 61
    (2009) 840-843.
    [29] D. Turnbull, Contemp Phys., 10 (1969) 473-488.
    [30] I. W. Donald, H. A. Davies, J. Non-Cryst. Solids, 30 (1978) 77-85.
    [31] O. N. Senkov, D. B. Miracle, MRS Bull., 36 (2001) 2183-2198.
    [32] Z. J. Yan, J. F. Li, S. R. He, Y. H. Zhou, MRS Bull., 38 (2003) 681-689.
    [33] T. H. Hung, J. C. Huang, J. S. C. Jang, S. C. Lu, Mater. Trans., 48 (2007) 239-243.
    [34] W. Chen, Y. Wang, J. Qiang, C. Dong, Acta Mater., 51 (2003) 1899-1907.
    [35] Q. Wang, Y. M. Wang, J. B. Qiang, X. F. Zhang, C. H. Shek, C. Dong, Intermetallics,
    12 (2004) 1229-1232.
    [36] Y. M. Wang, W. P. Xu, J. B. Qiang, C. H. Wong, C. H. Shek, C. Dong, Mat. Sci. Eng.
    a-Struct., 375 (2004) 411-416.
    [37] M. Iqbal, W. S. Sun, H. F. Zhang, J. I. Akhter, Z. Q. Hu, Mat. Sci. Eng. a-Struct., 447
    (2007) 167-173.
    [38] Z. P. Lu, H. Tan, Y. Li, S.C. Ng, Scripta Mater., 42 (2000) 667-673.
    [39] T. A. Waniuk, J. Schroers, W. L. Johnson, Appl. Phys. Lett., 78 (2001) 1213-1215.
    [40] Z. P. Lu, C. T. Liu, Acta Mater., 50 (2002) 3501-3512.
    [41] A. Inoue, Mater. T. JIM, 36 (1995) 866-875.
    [42] A. Inoue, A. Takeuchi, T. Zhang, Metall. Mater. Trans. A, 29 (1998) 1779-1793.
    [43] T. Egami, Mat. Sci. Eng. a-Struct., 226 (1997) 261-267.
    [44] S. S. Fang, X. Xiao, X. Lei, W. H. Li, Y.D. Dong, J. Non-Cryst. Solids, 321 (2003)
    120-125.
    [45] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes
    publications, New Jersey., (1998).
    [46] S. Veprek, M. Heintze, Plasma Chem. Plasma P, 10 (1990) 3-26.
    [47] S. Veprek, M. G. J. Veprekheijman, Appl. Phys. Lett., 56 (1990) 1766-1768.
    [48] J. Wang, R. Li, N. Hua, T. Zhang, J. Mater. Res., 26 (211) 2072-2079.
    [49] T. G. Park, S. Yi, D. H. Kim, Scripta Mater., 43 (2000) 109-114.
    [50] F. Spaepen, Acta Metall. Mater., 25 (1977) 407-415.
    [51] D. Turnbull, F. Spaepen, J. Polym. Sci. Pol. Sym., (1977) 237-243.
    [52] A. S. Argon, Acta Metall. Mater., 27 (1979) 47-58.
    [53] T. G. Nieh, T. W. Barbee, J. Wadsworth, Scripta Mater., 41 (1999) 929-935.
    [54] Y. M. Wang, J. Li, A. V. Hamza, T. W. Barbee, P. Natl. Acad. Sci. USA, 104 (2007)
    11155-11160.
    [55] A. Donohue, F. Spaepen, R. G. Hoagland, A. Misra, Appl. Phys. Lett., 91 (2007) 241905.
    [56] R. G. Hoagland, J. P. Hirth, A. Misra, Philos. Mag., 86 (2006) 3537-3558.
    [57] S. Y. Kuan, H. S. Chou, J. C. Huang, Surf. Coatings Technol., 234 (2012) 58-61.
    [58] J. L. Ke, C. H. Huang, Y. H. Chen, W. Y. Tsai, T. Y. Wei, J. C. Huang, Applied Surface
    Science, 322 (2014) 41-46.
    [59] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, T. G. Nieh, Appl. Phys. Lett., 101 (2012) 011902.
    [60] Y. T. Lin, Y. L. Chung, Z. K. Wang, J. C. Huang, Intermetallics, 57 (2015) 133-138.
    [61] X. D. Li, B. Bhushan, Mater. Charact., 48 (2002) 11-36.
    [62] W. L. Johnson, K. Samwer, Phys. Rev. Lett., 95 (2005) 195501.
    [63] C. A. Schuh, C. E. Packard, A. C. Lund, J. Mater. Res., 21 (2006) 725-736.
    [64] A. Concustell, J. Sort, A. L. Greer, M. D. Baro, Appl. Phys. Lett., 88 (2006) 171911.
    [65] A. Castellero, B. Moser, D. I. Uhlenhaut, F. H. Dalla Torre, J. F. Loffler, Acta Mater., 56
    (2008) 3777-3785.
    [66] K. Csach, J. Miskuf, A. Jurikova, P. Vojtanik, Acta Phys. Pol. A, 113 (2008) 91-94.
    [67] B. G. Yoo, J. H. Oh, Y. J. Kim, K. W. Park, J. C. Lee, J. I. Jang, Intermetallics, 18 (2010) 1898-1901.
    [68] Y. J. Huang, Y. L. Chiu, J. Shen, J. J. J. Chen, J. F. Sun, J. Mater. Res., 24 (2009)
    993-997.
    [69] Y. J. Huang, J. Shen, Y. L. Chiu, J. J. J. Chen, J. F. Sun, Intermetallics, 17 (2009)
    190-194.
    [70] F. G. Yang, J. C. M. Li, F. Q. Yang, Mater. Sci. Eng. A, 201 (1995) 40-49.
    [71] J. C. M. Li, Mater. Sci. Eng. A, 322 (2002) 23-42.
    [72] T. Chudoba, F. Richter, Surf. Coat. Technol, 148 (2011) 191-198.
    [73] P. F. Yu, S. D. Feng, G. S. Xu, X. L. Guo, T. T. Wang, W. Zhao, L. Qi, G. Li, P. K.
    Liaw, R. P. Liu, Scripta Mater., 90-91 (2014) 45-48.
    [74] C. L. Wang, M. Zhang, T. G. Nieh, J. Phys. D: Appl. Phys, 42 (2009) 115405.
    [75] C. L. Wang, Y. H. Lai, J. C. Huang, T. G. Nieh, Scripta Mater., 62 (2010) 175-178.
    [76] S. J. Bull, J. Phys. D. Appl. Phys., 38 (2005) R393-R413.
    [77] M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix, Science, 305 (2004) 986-989.
    [78] J. R. Greer, W. C. Oliver, W. D. Nix, Acta Mater., 53 (2005) 1821-1830.
    [79] H. Zhang, B. E. Schuster, Q. Wei, K. T. Ramesh, Scripta Mater., 54 (2006) 181-186.
    [80] C. J. Lee, J. C. Huang, T. G. Nieh, Appl. Phys. Lett., 91 (2007) 161913.
    [81] Y. H. Lai, C. J. Lee, Y. T. Cheng, H. S. Chou, H. M. Chen, X. H. Du, C. I. Chang, J. C.
    Huang, S. R. Jian, J. S. C. Jang, T. G. Nieh, Scripta Mater., 58 (2008) 890-893.
    [82] L. Wang, M. C. Liu, J. C. Huang, Y. Li, W. H. Wang, T. G. Nieh, Intermetallics, 26 2012 162-165.
    [83] P. F. Guan, M. W. Chen, T. Egami, Phys. Rev. Lett., 104 (2010) 205701.
    [84] S. Y. Kuan, J. C. Huang, Thin Solid Films, 561 (2014) 43-47.
    [85] M. C. Liu, C. J. Lee, Y. H. Lai, J. C. Huang, Thin Solid Films, 518 (2010) 7295-7299.
    [86] M. C. Liu, J. C. Huang, Y. T. Fong, S. P. Ju, X. H. Du, H. J. Pei, T. G. Nieh, Acta Mater., 61 (2013) 3304-3313.
    [87] M. D. Uchic, D. A. Dimiduk, Mat. Sci. Eng. a-Struct., 400 (2005) 268-278.
    [88] A. W. Czanderna, T. E. Madey, C. J. Powell, Beam Effects, Surface Topography, and
    Depth Profiling in Surface Analysis, Springer, 2010.
    [89] C. A. Volkert, A. M. Minor, MRS Bull., 32 (2007) 389-395.
    [90] C. S. Kim, S. H. Ahn, D. Y. Jang, Thin Solid Films, 518 (2010) 5177-5182.
    [91] C. S. Kim, H. J. Kim, S. H. Ahn, D. Y. Jang, Microelectron Eng., 87 (2010) 2024-2024.
    [92] S. Reyntjens, R. Puers, J. Micromech Microeng., 11 (2001) 287-300.
    [93] C. Motz, T. Schoberl, R. Pippan, Acta Mater, 53 (2005) 4269-4279.
    [94] D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Mater. Sci. Eng. A, 459 (2007)
    262-272.
    [95] W. Sigle, G. Richter, M. Ruhle, S. Schmidt, Appl. Phys. Lett., 89 (2006) 121911.
    [96] P. D. Prewett, G. L. R. Mair, Focused ion beams from liquid metal ion sources,
    Research Studies Press, 1991.
    [97] C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J. Jamet, J. Ferré, C. Chappert, V.
    Mathet, H. Bernas, Microelectron Eng., 53 (2000) 191-194.
    [98] D. Reuter, P. Schafmeister, J. Koch, K. Schmidt, A. Wieck, Mater. Sci. Eng. B, 88 (2002) 230-233.
    [99] H. Bei, S. Shim, M. Miller, G. Pharr, E. George, Appl. Phys. Lett., 91 (2007) 111915.
    [100] P. Giri, V. Raineri, G. Franzo, E. Rimini, Phys. Rev. B, 65 (2001) 012110.
    [101] P. Prewett, C. Anthony, D. Cheneler, M. Ward, Micro & Nano Letters, IET, 3 (2008)
    25-28.
    [102] S. Shim, H. Bei, M. K. Miller, G. M. Pharr, E. P. George, Acta Mater., 57 (2009)
    503-510.
    [103] L. Giannuzzi, F. Stevie, Micron, 30 (1999) 197-204.
    [104] L. Pastewka, R. Salzer, A. Graff, F. Altmann, M. Moseler, Nuclear Instruments and
    Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267
    (2009) 3072-3075.
    [105] R. Wirth, Chemical Geology, 261 (2009) 217-229.
    [106] C. J. Lee, H. K. Lin, J. C. Huang, S. Y. Kuan, S. Y., Scripta Mater., 2011, 65, 695-698.
    [107] H. Huang, F. Spaepen, Acta Mater., 48 (2000) 3261-3269.
    [108] Y. M. Wang, K. Wang, D. Pan, K. Lu, K. J. Hemker, E. Ma, Scripta Mater., 48 (2003)
    1581-1586.
    [109] M. C. Liu, J. C. Huang, K. W. Chen, J. F. Lin, W. D. Li, Y. F. Gao, T. G. Nieh, Scripta
    Mater., 66 (2012) 817-820.
    [110] H. J. Pei, C. J. Lee, X. H. Du, Y. C. Chang, J. C. Huang, Mater. Sci. Eng. A, 528 (2011) 7317-7322.
    [111] H. S. Huang, H. J. Pei, Y. C. Chang, C. J. Lee, J. C. Huang, Thin Solid Films, 529
    (2013) 177-180.
    [112] F. F. Wu, Z. F. Zhang, S. X. Y. Mao, Adv. Eng. Mater., 11 (2009) 899-901.
    [113] L. Huang, Q. J. Li, Z. W. Shan, J. Sun, E. Ma, Nat. Commun., 2 (2011) 547.
    [114] J. Ye, R. K. Mishra, A. M. Minor, Scripta Mater., 59 (2008) 951-954.
    [115] H. Shimamura, T. Nakamura, Polym. Degrad. Stab, 94 (2009) 1389-1396.
    [116] M. A. Haque, M. T. A. Saif, PNAS, 101 (2004) 6335-6340.
    [117] H. Zheng, A. Cao, C. R. Weinberger, J. Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, S. X. Mao, Nat. Commun, 1 (2010) 144.
    [118] Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, Nano Lett., 11 (2011) 3151-3155.
    [119] L. Tian, Y. Q. Cheng, Z. W. Shan, J. Li, C. C. Wang, X. D. Han, J. Sun, E. Ma, Nat.
    Commun., 3 (2012) 609.
    [120] G. Dhem, Prog. Mater. Sci., 54 (2009) 664-688.
    [121] M. Legros, D. S. Gianola, C. Motz, MRS Bull., 35 (2010) 354-360.
    [122] J. R. Greer, J. T. De Hosson, Prog. Mater. Sci., 56 (2011) 654-724.
    [123] D. Kiener, A. M. Minor, Nano Lett., 11 (2011) 3816-3820.
    [124] Q. Yu, L. Qi, K. Chen, R. K. Mishra, J. Li, A. M. Minor, Nano Lett., 12 (2012)
    887-892.
    [125] W.G. Hoover, Phys. Rev. A, 31 (1985) 1695-1697.
    [126] S. Nose, J. Chem. Phys, 81 (1984) 511-519.
    [127] N. Miyazaki, Y. Shiozaki, Jsme Int. J. a-Mech. M., 39 (1996) 606-612.
    [128] L. Wang, H. Bei, Y. F. Gao, Z .P. Lu, T. G. Nieh, Acta Mater., 59 (2011) 2858-2864.
    [129] W. H. Jiang, G. J. Fan, F. X. Liu, G. Y. Wang, H. Choo, P. K. Liaw, Int. J. Plast., 24
    (2008) 1-16.
    [130] L. C. Zhang, B. C. Wei, D. M. Xing, T. H. Zhang, W. H. Li, Y. Liu, Intermetallics, 15
    (2007) 791-795.
    [131] J. C. Ye, J. Lu, C. T. Liu, Q. Wang, Y. Yang, Nat. Mater., 9 (2010) 619-623.
    [132] W. Dmowski, T. Iwashita, C. P. Chuang, J. Almer, T. Egami, Phys. Rev. Lett., 105
    (2010) 20550.
    [133] M. C. Liu, X. H. Du, I. C. Lin, H. J. Pei, J. C. Huang, Intermetallics, 30 (2012) 30-34.
    [134] M. C. Liu, Y. T. Feng, J. C. Huang, J. P. Ju, H. J. Pei, X. H. Du, T. G. Nieh, Acta
    Mater., 61 (2013) 3304-3313.
    [135] H. J. Lee, A. G. Ramirez, Appl. Phys. Lett., 85 (2004) 1146-1148.
    [136] B. Lucas, W. Oliver, Metall. Mater. Trans., 30A (1999) 601-610.
    [137] V. Raman, R. Berriche, J. Mater. Res., 7 (1992) 627-638.
    [138] G. M. Pharr, W. C. Oliver, MRS Bull., 17 (1992) 28-33.
    [139] L. Lu, R. Schwaiger, Z. W. Shan, M. Dao, K. Lu, S. Suresh, Acta Mater., 53 (2005)
    2169-2179.
    [140] R. Schwaiger, B. Moser, N. Chollacoop, M. Dao, S. Suresh, Acta Mater., 51 (2003)
    5159-5172
    [141] Q. Wei, S. Cheng, K. T. Rame.sh, E. Ma, Mater. Sci. Eng. A, 381 (2004) 71979.
    [142] P. F. Yu, S. D. Feng, G. S. Xu, X. L. Guo, T. T. Wang, W. Zhao, L. Qi, G. Li, P. K.
    Liaw, R. P. Liu, Scripta Mater., 45 (2014) 90-91.
    [143] W. H. Wang, C. Dong, C. H. Shek, Mater. Sci. Eng. R, 44 (2004) 45-89.
    [144] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, Science, 315 (2007) 1385-1388.
    [145] T. C. Hufnagel, T. Jiao, Y. Li , K. T. Ramesh, J. Mater. Res., 17 (2002) 1441-1445.
    [146] W. J. Wright, R. Saha, W. D. Nix, Mater. Trans., 42 (2001) 642-649.
    [147] Y. Ma, J. H. Ye, G. J. Peng, D. H. Wen, T. H. Zhang, Mater. Sci. Eng. A, 622 (2015)
    76-87.
    [148] B. Wei, T. Zhang, W. Li, D. Xing, L. Zhang, Y. Wang, Mater. Trans., 46 (2005) 2959-2962.
    [149] E. Tenckhoff, Deformation mechanisms, texture and anisotropy in zirconium and
    zircaloy, ASTM, Philadelphia, 1988.
    [150] Y. N. Wang, J. C. Huang, Materials Chemistry and Physics, 81 (2003) 11-26.
    [151] Y. N. Wang, J.C. Huang, Acta Mater., 55 (2007) 897-905.
    [152] Nguyen Q. Chinh, Tamás Csanádi, Tivadar Gyori, Ruslan Z. Valiev, Boris B. Straumal,
    Megumi Kawasaki, Terence G. Langdon, Mater. Sci. Eng. A, 543 (2012) 117-120.
    [153] P. Huang, F. Wang, M. Xu, K. W. Xu, T. J. Lu, Acta Mater., 58 (2010) 5196-5205.
    [154] H. Somekawa, C. A. Schuh, Acta Mater., 59 (2011) 7554-7563.
    [155] N. Wang, Z. Wang, K. T. Aust, U. Erb, Mater. Sci. Eng. A, 237 (1997) 150-158.
    [156] M. J. Mayo, R. W. Siegel, A. Narayanasamy, W. D. Nix, J. Mater. Res., 5 (1990) 1073-1082.
    [157] C. H. Hsieh, C. H. Chang, W. S. Chuang, X. Wang, J. C. Huang, Appl. Surf. Sci., 356 (2015) 416-421.
    口試委員
  • 鄭憲清 - 召集委員
  • 朱訓鵬 - 委員
  • 林哲信 - 委員
  • 林鉉凱 - 委員
  • 潘正堂 - 委員
  • 黃志青 - 指導教授
  • 口試日期 2015-10-20 繳交日期 2016-01-13

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫