博碩士論文 etd-0007120-101450 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 林青儀(Ching-Yi Lin) 電子郵件信箱 E-mail 資料不公開
畢業系所 電子商務與商業分析數位學習碩士在職專班(Online Master of Business Administration in Electronic Commerce and Business Analytics)
畢業學位 碩士(Master) 畢業時期 108學年第1學期
論文名稱(中) 影響線上評論之認知有用性之因素之研究―以Yelp.com之飲食評論為例
論文名稱(英) The Relationship between Online Review Content and Perceived Usefulness―Yelp Reviews in Food Industries
檔案
  • etd-0007120-101450.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:2 年後公開 (2022-01-07 公開)

    電子論文:使用者自訂權限:校內 2 年後、校外 3 年後公開

    論文語文/頁數 中文/67
    統計 本論文已被瀏覽 5 次,被下載 0 次
    摘要(中) 在網路評論影響人類決策的時代,不僅消費者依賴網路評論,生產者為了配
    合消費者的習慣或主動出擊,對於何種評論被消費者視為有用也甚是關心。 本
    研究聚焦餐飲業,探討何種評論內容容易讓消費者覺得有用,資料收集自
    Yelp.com 美國地區的餐飲評論共計四萬多則,商業類別涵蓋烘焙坊、早午餐、咖
    啡館、中餐廳、義法餐廳及果汁吧,利用文字分析方式分別檢視評論中的情緒、
    內容、作者特性、可讀性及文章結構是否會影響消費者對評論有用性的認知,並
    檢視上述商業類別是否會對評論有用性產生調節作用。研究結果顯示作者特性中
    的評論篇數與平均星等對評論有用性有負向關係,情緒、內容及文章結構有正向
    關係;情緒、內容主題、作者特性、可讀性及文章結構與評論有用性的關係均會
    受到商業類別的調變,例如內容談到洗手間的評論,會對中餐廳及義法餐廳的評
    論有用性產生顯著的正相關,對其他產業則無產生顯著關係。根據研究結果,商
    家可以得知具備何種內容的評論較易達到自我行銷的目的,在評論寫手的選擇及
    內容的撰寫上將更具效益,另外在營運上可依消費者的喜好來調整產品或服務內
    容,增進營收成長;對評論寫手而言,可以得知何種作者特質或文章結構的評論
    會更受消費者青睞。
    摘要(英) It is a common belief that online review may influence consumer’s decision. To
    meet with consumers’ interest, merchants pay great attention to customers’ perceived
    usefulness from online reviews. This research focuses on the analysis of online reviews
    in the food industry. From Yelp.com US, we collect a corpus of more than 40 thousand
    online reviews, covering six business categories: bakeries, brunches, cafes, Chinese
    restaurants, Italian/French restaurants and juice bars. We use text analysis techniques to
    detect and measure the review articles’ article structures, topics, sentiments and
    readability scores, and examine: (a) how these article properties may correlate with the
    customers’ perceived usefulness and (b) how the business categories may moderate the
    relationship between perceived usefulness and these article properties. The result
    indicates that whilst certain sentiments, topics and article structures scores positively
    correlates to perceived usefulness, some reviewer’s properties have significant negative
    influences on it. Besides, the business categories exhibit moderate effects in most of the
    aforementioned relationships. For example, the ‘restroom’ topic shows significant
    positive effect to the perceived usefulness in Chinese and Italian/French restaurants
    whilst there’s no effect on the other business categories. These findings might help the
    marketers in designing social media campaigns, the reviewers in composing review
    articles and the merchants in improving their products and services.
    關鍵字(中)
  • 評論有用性、網路口碑、線上評論、餐飲評論、評論情緒、評論內容、作者特徵、文章結構
  • 關鍵字(英)
  • Review content
  • Perceived usefulness
  • eWOM
  • Online review
  • Sentiment analysis
  • 論文目次 論文審定書 i
    論文公開授權書 ii
    謝 誌 iii
    摘 要 iv
    Abstract v
    圖 次 xiii
    表 次 ix
    第一章 緒論 1
    第一節 研究背景與動機 1
    第二節 研究目的 3
    第三節 研究問題 4
    第二章 文獻探討 5
    第一節 線上口碑 5
    第二節 顧客參與 7
    第三節 認知有用性 9
    第四節 評論情緒 11
    第五節 文章可讀性 13
    第三章 研究方法 15
    第一節 研究架構 15
    第二節 使用工具 16
    第三節 資料收集 17
    第四節 研究模型、假設與變數 19
    第五節 統計分析方法 26
    第四章 資料分析與研究成果 28
    第一節 敘述統計分析 28
    第二節 推論統計分析 33
    第三節 趨勢分析 40
    第五章 討論與結論 42
    第一節 研究結論 42
    第二節 研究貢獻 44
    第三節 研究範圍與限制 47
    第四節 未來展望 48
    參考文獻 49
    附件 a
    參考文獻 一、 中文文獻
    吳忠翰 (2009)。網路口碑的訊息訴求與情緒對消費者信任與購買意圖的影響 (碩
      士論文),中山大學,高雄。
    吳江、劉彎彎 (2017)。什麼樣的評論更容易獲得有用性投票。數據分析與知識發 
      現,9,16-27。
    李啟菁 (2010)。中文部落格文章之意見分析 (碩士論文),台北科技大學。
    林原申 (2008)。以認知性與情緒性因素探討網路口碑對消費者決策之影響 (碩士
      論文),政治大學,台北。
    林東清 (2018)。資訊管理:e化企業的核心競爭能力 (七版)。台北:智勝。
    唐日新、葉耀仁 (2011)。應用推敲可能性模型探討部落格行銷效果:以旅遊部落
      格為例。中山管理評論,19 (3),517-555。
    陳建文、陳文國、徐永穎 (2011)。網路口碑採用模式之研究。行銷評論,8 (2),
      175-198。
    郭俊桔、張育蓉 (2013)。使用情緒分析於圖書館使用者滿意度評估之研究。圖書
      資訊學研究,7 (2),153-197。
    黃俊堯、柳秉佑 (2016)。消費者線上口碑與評論研究:國內外相關文獻回顧與討
      論。臺大管理論叢,26 (3),215-256。
    鄭智豪 (2008)。網路資訊搜尋行為與餐廳消費決策之研究 (碩士論文),中國文化
      大學,台北。
    羅心華 (2006)。以整合行銷傳播觀點看購物心情、情緒、商店氣氛與衝動性購買
      行為之關係-以北市四家百貨公司為例 (碩士論文),交通大學,新竹。
    羅珮綺 (2016)。基於修辭結構的評論品質分析 (碩士論文),中山大學,高雄。

    二、 英文文獻
    Arndt, J. (1967). Word of Mouth Advertising: A Review of The Literature. New York: Advertising Research Federation.
    Bhattacherjee, A., Sanford, C. (2006). Influence Processes For Information Technology Acceptance: An Elaboration Likelihood Model, MIS Quarterly, 30(4), 805-825.
    Chapman, C.R., Nakamura, Y. (2000). A passion of the soul: an introduction to pain for
      consciousness researchers. Consciousness and Cognition, 8(4), 391-422.
    Charrada, E.B. (2016). Which One to Read? Factors Influencing the Usefulness of
      Online Reviews for RE. Paper presented at the International Requirements
      Engineering Conference Workshops, Beijing.
    Dai, Y., & Jiang, Y. (2016). The Research of Online Reviews’ Influence towards management response on Consumer Purchasing Decisions. Paper presented at the
    Wuhan International Conference on E-Business, Wuhan.
    Duffy, T.M. (1985). Readability formulas: What’s the use? Designing usable texts. New
      York: Academic Press.
    Fry, E. (1977). Fry’s readability graph: Clarifications, validity, and extension to level17.
      Journal of Reading, 21, 242-252.
    Fry, E. (2002). Readability versus leveling. The Reading Teacher, 56, 286-291.
    Gesmann, M., De Castillo. D., Cheng. J., Baldry. A. (2019). googleVis: R Interface to Google Charts. https://cran.r-project.org/web/packages/googleVis/index.html
    Ghose, A., Ipeirotis, P.G. (2010). Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. Transactions on Knowledge and Data Engineering, 23, 1498-1512.
    Guo, Y.L., Zhang, X.G., Zhou, M.Y., Zhai, Y.X., Dao, R. (2016). Analysis of the usefulness of online reviews based on different moderating effects. Paper presented at the International Symposium on Computational Intelligence and Design, Hohhot.
    Hu, N., Koh, N.S. & Reddy, S.K. (2014). Ratings lead you to the product, reviews help you clinch it ? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42-53.
    Hogreve, J., Eller, T., & Firmhofer, N. (2013). When The Whole World is Listening- An Exploratory Investigation of Individual Complaints on Social Media Platforms. Dienstleistungsmanagement und Social Media, 515-540.
    Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, 
      Charles University, Czech Republic. (2017). UDPipe: Trainable pipeline for tokenizing, tagging, lemmatizing and parsing Universal Treebanks and other CoNLL-U files. http://ufal.mff.cuni.cz/udpipe
    Islam, J.U., Rahman, Z. (2016). The transpiring journey of customer engagement research in marketing: A systematic review of the past decade. Management Decision, 54, 2008-2034.
    Jockers, M. L. (2015). Syuzhet: Extract Sentiment and Plot Arcs from Text. https://github.com/mjockers/syuzhet
    Korfiatis, N., Rodríuez, D., & Sicilia, M.A. (2008). The Impact of Readability on the
      Usefulness of Online Product Reviews: A Case Study on an Online Bookstore,
      Paper presented at the Meeting of WSKS, Berlin.
    Korfiatis, N., García-Bariocanal, E., & Sánchez-Alonso S. (2012). Evaluating content
    quality and helpfulness of online product reviews: The interplay of review
    helpfulness vs. review content. Electronic Commerce Research and Applications, 11, 205-217.
    Kozinets, R. V., De Valck, K., Wojnicki, A. C., &Wilner, S. J. S. (2010). Networked Narratives: Understanding Word-Of-Mouth Marketing in Online Communities. Journal of Marketing, 74(2), 71-89.
    Kraemer, T., Heidenreich, S., Donsbach, J., & Gouthier, M. (2016). Basic Emotions and Online Customer Engagement Behavior, AMA Winter Educators’Proceedings, 27, K-85.
    Lerner, J.S., Keltner, D. (2000). Beyond valence: Toward a model of emotion-specific influences on judgement and choice, Cognition and Emotion, 14(4), 473-493.
    Moen, Ø., Havro, L.J., & Bjering, E. (2017). Online consumers reviews:
      Examining the moderating effects of product type and product popularity on the 
      review impact on sales, Cogent Business & Management, 4, 1368114.
    Mohammad, S., Turney,P. (2010). Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon, Paper presented in Proceedings of the NAACL-HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, LA.
    Mudambi, S.M., Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Aamazon.com. MIS Quarterly, 34, 185-200.
    Ngo-Ye, T.L., Sinha, A.P. (2014). The influence of reviewer engagement characteristics on online review helpfulness: A text regression model, Decision Support Systems, 61, 47-58.
    Nyilasy, G. (2006). Word of mouth: What we really know – and what we don’t.
      Connected marketing, 161-184.
    Ogruk, G., Anderson, T.D., & Nacass, A.S. (2018). In-Store Customer Experience and Customer Emotional State in the Retail Industry, Journal of Research for Consumers, 32, 110-141.
    Pansari. A., Kumar. V. (2017) Customer engagement: the construct, antecedents, and
      consequences, Journal of the Academy of Marketing Science, 45, 294-311
    Power, M., Dalgleish, T. (1997). Cognition and Emotion From Order to Disorder. Hove: Psychology Press.
    Riffai, M., Grant, K., & Edgar, D. (2012). Big TAM in Oman: Exploring the promise of
      on-line banking, its adoption by customers and the challenges of banking in Oman.
      International journal of information management, 32(3), 239-250.
    Shen, R., Shen, J.L., Li, Y.H., & Wang, H.H. (2016). Predicting Usefulness of Yelp Reviews with Localized Linear Regression Model, Paper presented at the International Conference on Software Engineering and Service Science, Beijing.
    Siering, M., Muntermann, J. (2013). What Drives the Helpfulness of Online Product Reviews? From Stars to Facts and Emotions. Paper presented at the International Conference on Wirtschaftsinformatik, Leipzig
    Söderlund, M., Rosengren, S. (2007). Receiving word-of-mouth from the service
      customer: An emotion-based effectiveness assessment, Journal of Retailing and
      Consumer Services, 14, 123-136.
    Spiegel Research Center ( n.d.). How Online Reviews Influence Sales.
       Spiegel.medill.northwestern.edu
    Sussman, S. W., & Siegal, W. S. (2003). Informational influence in organizations: An
      integrated approach to knowledge adoption. Information Systems Research, 14(1),
      47–65.
    Tang, M., Jin, J., Liu, Y., Li, C., Zhang, W. (2019). Integrating Topic, Sentiment, and Syntax for Modeling Online Reviews: A Topic Model Approach Journal of Computing and Information Science in Engineering, 19, 17-29.
    Thakur, R. (2016). Understanding Customer Engagement and Loyalty: A case of
    Mobile Devices for Shopping, Journal of Retailing and Customer Services, 32,
    151-163.
    Thakur, R. (2018). Customer engagement and online reviews, Journal of Retailing
    and Consumer Services, 41, 48-59.
    Tyler, R. (2018). View Source Fast readability scores for text data.
    https://github.com/trinker/readability
    VanDoorn, J., Lemon, K.N., Mittal, V., Pick, D., Pirner, P., Verhoef, P.C. (2010).
      Customer Engagement Behavior: Theoretical Foundations and Research
      Directions, Journal of Science Research, 13(3), 253-266.
    Venkatesan. R. (2017). Executing on a customer engagement strategy. Journal of the
      Academy of Marketing Science, 45(3), 289-293.
    Vivek, S.D., Beatty, S.E., & Morgan. R.M. (2014). Customer Engagement: Exploring
      Customer Relationships Beyond Purchase, Journal of Marketing Theory and
      Practice,20:2,122-146.
    Wang, Y. (2016). Information Adoption Model, a Review of the Literature. Journal of
    Economics, Business and Management, 4, 618-622.
    Willemsen, L. M., Neijens, P. C., Bronner, F., & De Ridder, J. A. (2011). “Highly recommended!” The content characteristics and perceived usefulness of online consumer reviews. Journal of Computer-Mediated Communication, 17(1), 19-38.
    Ye, Q., Law, R., Gu, B., & Chen, W. (2011). The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings, Computers in Human Behavior, 27, 634-639.
    Yin, D., Bond, S.D., Zhang, H. (2014). Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38, 539-560.
    Żyminkowska, K., Żyminkowski, T., & Błaszczyk, R. (2017). Effects of customer engagement behavior, Journal of Economics and Management, 28(2), 133-160.
    口試委員
  • 吳基逞 - 召集委員
  • 康藝晃 - 委員
  • 卓雍然 - 指導教授
  • 黃三益 - 指導教授
  • 口試日期 2020-01-06 繳交日期 2020-01-07

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫