Responsive image
博碩士論文 etd-1130120-124328 詳細資訊
Title page for etd-1130120-124328
論文名稱
Title
在RAN與SDN網路調整影音串流Data Rate的機制
A Data-Rate Adjustment Mechanism for Video Streaming in RAN and SDN Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-12-29
繳交日期
Date of Submission
2020-12-30
關鍵字
Keywords
RAN、SDN、eMBB、影音串流、傳輸率、封包遺失率
RAN, SDN, eMBB, Video streaming, Throughput, Packet loss rate
統計
Statistics
本論文已被瀏覽 175 次,被下載 1
The thesis/dissertation has been browsed 175 times, has been downloaded 1 times.
中文摘要
eMBB (enhanced Mobile BroadBand)已經被3GPP (3rd Generation Partnership Project)列入5G的重要應用之一,此應用需要大頻寬來確保影音串流(Video Streaming)的播放品質,但是無線存取網路(Radio Access Network, RAN)與軟體定義網路(Software Defined Network, SDN)都無法保障終點端到終點端(End-to-End)的影音串流傳送品質,因此本論文在RAN與SDN網路下提出並實作一個調整影音串流Data Rate的機制(Data-Rate Adjustment Scheme, DRAS)。首先,我們讓RAN的EPC (Evolved Packet Core)可以攔截UE (User Equipment)端向Streaming Server提出的Data Rate要求,並且設計一個控制封包讓EPC可以將Data Rate的要求轉傳給SDN Controller。此外當SDN網路的頻寬不夠傳送一條高品質影音串流時,我們讓SDN Controller可以限制其它背景資料流來保障這條高品質影音串流的傳送。另外,當超過一條高品質影音串流需要在RAN與SDN網路上同時被傳送時,我們設計一個控制封包讓SDN Controller可以將RAN與SDN網路所能承載的最大頻寬通知Streaming Server,Streaming Server可以依據此最大頻寬來調降這些高品質影音串流的Data Rates。最後我們在實作中設計兩種不同影音串流的傳送情境,我們分別量測有使用DRAS與沒有使用DRAS時傳輸率(Throughput)與封包遺失率(Packet Loss Rate)的差別,從實驗結果中,我們驗證了有使用DRAS時可以讓傳送一條或多條高品質影音串流的Throughput有效提升,並且封包遺失率可以大幅下降。
Abstract
Enhanced Mobile BroadBand (eMBB) has been listed as one of the important 5G applications by the 3rd Generation Partnership Project (3GPP). This application requires a large bandwidth to ensure the playback quality of video streaming. However, neither Radio Access Network (RAN) nor Software Defined Network (SDN) can guarantee the transmission quality of end-to-end video streaming. Therefore, this paper proposes and implements a mechanism, referred to as data-rate adjustment scheme (DRAS), for adjusting the data rates of video streamings under a RAN and SDN network. First, we let the Evolved Packet Core (EPC) of the RAN intercept data rate request from a User Equipment (UE) to the streaming server, and then we design a control packet so that the EPC can forward the data rate request to the SDN controller. Secondly, when the bandwidth of the SDN network is not enough to transmit a high-quality video streaming, we let the SDN controller restrict other background traffic to ensure the transmission of this high-quality video streaming. Thirdly, when more than one high-quality video streaming needs to be transmitted on the RAN and SDN network at the same time, we design a second control packet so that the SDN controller can notify the streaming server the maximum bandwidth that the RAN and SDN network can carry. Thus, the data rates of these high-quality video streamings can be reduced correspondingly based on this maximum bandwidth. Finally, we design two different video transmission scenarios in the experiment. We measure the differences between the throughput and the packet loss rate when DRAS was used and not used. From the experimental results, we have verified that the throughput transmission of one or more high-quality video streamings can be significantly improved, and the packet loss rate can be greatly reduced.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖表目錄 viii
第一章 導論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 章節介紹 3
第二章 RAN與SDN網路的影音串流 4
2.1 RAN與SDN 4
2.1.1 RAN 4
2.1.2 SDN 5
2.1.2.1 SDN的運作流程 6
2.1.2.2 SDN的頻寬限制 7
2.2 eMBB網路 9
2.3 RTSP協定與SDP協定 10
2.4 Data Rate的調整 11
2.5相關研究 13
2.5.1 使用SDN網路 13
2.5.1.1 保障影音串流 13
2.5.1.2 調整影音串流 14
2.5.2 不使用SDN網路 15
第三章 調整影音串流Data Rate的機制 17
3.1 DRAS的系統架構 17
3.2 兩種控制訊息 19
3.2.1 影音資訊訊息(MM) 19
3.2.2 調整訊息(AM) 20
3.3 DRAS系統的模組 21
3.3.1 封包攔截模組(PIM) 21
3.3.2 路徑建立模組(PEM) 22
3.3.3 頻寬調整模組(BAM) 23
3.4 調整高品質影音串流的Data Rate 25
第四章 實作與結果分析 26
4.1 實驗環境與設備規格 26
4.2 在RAN與SDN平台上的實作 29
4.2.1 封包攔截模組的虛擬碼 29
4.2.2 路徑建立模組的虛擬碼 32
4.2.3 頻寬調整模組的虛擬碼 35
4.3 在RAN與SDN平台上的實作 36
4.3.1實作參數的使用 36
4.3.2結果的分析 37
4.3.2.1 情境一 37
4.3.2.2 情境二 39
第五章 結論與未來工作 42
5.1 結論 42
5.2 遭遇的困難 43
5.3 未來工作 43
References 44
Acronyms 49
Index 50
參考文獻 References
[1] “Study on Scenarios and Requirements for Next Generation Access Technologies,” 3GPP TR 38.913 Ver. 16.0.0, Jul. 18, 2020.
[2] “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) Conformance Specification,” 3GPP TS 36.523-1 Ver. 16.4.0, Mar. 20, 2020.
[3] “General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access,” 3GPP TS 23.401 Ver. 16.6.0, Mar. 27, 2020.
[4] M. Markowski, P. Ryba, and K. Puchała, “Software Defined Networking Research Laboratory-Experimental Topologies and Scenarios,” Third European Network Intelligence Conference (ENIC), Wroclaw, Poland, pp. 252-256, Sep. 5-7, 2016.
[5] M. Shin, K. Nam, and H. Kim, “Software-Defined Networking (SDN): A Reference Architecture and Open APIs,” International Conference on ICT Convergence (ICTC), Jeju Island, South Korea, pp. 360-361, Oct. 15-17, 2012.
[6] A. Gelberger, N. Yemini, and R. Giladi, “Performance Analysis of Software-Defined Networking (SDN),” 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, San Francisco, CA, USA, pp. 389-393, Aug. 14-16, 2013.
[7] B. Pfaff, B. Lantz, B. Heller, and C. Barker, “OpenFlow Switch Specification ,” ONF TS-006, Ver. 1.3.0, Jun. 25, 2012.
[8] B. Nunes, M. Mendonca, and X. Nguyen, “A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks,” IEEE Communications Surveys & Tutorials, pp. 1617-1634, Feb. 13, 2014.
[9] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On Scalability of Software-Defined Networking,” IEEE Communications Magazine, pp. 136-141, Feb. 14, 2013.
[10] M. Breiki, S. Zhou, and Y. Luo, “A Meter Band Rate Mechanism to Improve the Native QoS Capability of OpenFlow and OpenDaylight,” International Conference on Advanced Communication Technologies and Networking (CommNet), Rabat, Morocco, pp. 1-6, Apr. 12-14, 2019.
[11] H. Krishna, N. Adrichem, and F. Kuipers, “Providing Bandwidth Guarantees with OpenFlow,” Symposium on Communications and Vehicular Technologies (SCVT), Mons, Belgium, pp. 1-6, Nov. 22, 2016.
[12] I. Šeremet and S. Čaušević, “Advances of Configuring Quality of Service (QoS) in Software Defined Networks (SDN) by Using Meter Table,” 19th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, pp. 1-5, Mar. 18-20, 2020.
[13] C. Bektas, S. Monhof, F. Kurtz, and C. Wietfeld, “Towards 5G: An Empirical Evaluation of Software-Defined End-to-End Network Slicing,” Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, pp. 1-6, Dec. 9-13, 2018.
[14] P. Demestichas, A. Georgakopoulos, and D. Karvounas, “5G on the Horizon: Key Challenges for the Radio-Access Network,” IEEE Vehicular Technology Magazine, pp. 47-53, Jul. 25, 2013.
[15] P. Korrai, E. Lagunas, S. Sharma, and S. Chatzinotas, “Slicing Based Resource Allocation for Multiplexing of eMBB and uRLLC Services in 5G Wireless Networks,” 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, pp. 1-5, Sep. 11-13, 2019.
[16] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),” RFC 2326, Apr. 1998.
[17] M. Handley, V. Jacobson, and C. Perkins, “Session Description Protocol (SDP),” RFC 4566, Jul. 2006.
[18] Y. Huang, “Implementation of an SCV Stream-Splitting Mechanism Using RTSP in Multi-RAT Networks,” Department of Electrical Engineering, National Sun Yat-Sen University, Master Thesis, Oct. 2016.
[19] L. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC: A Client-Side Controller for Dynamic Adaptive Streaming over HTTP (DASH),” 20th International Packet Video Workshop, San Jose, CA, USA, pp. 1-8, Dec. 12-13, 2013.
[20] S. Mohapatra, S. Bisoy, and P. Dash, “Stability Analysis of Active Queue Management Techniques,” International Conference on Man and Machine Interfacing (MAMI), Bhubaneswar, India, pp. 1-6, Dec. 17-19, 2015.
[21] E. Bouzidi, D. Luong, A. Outtagarts, and A. Hebbar, “Online-Based Learning for Predictive Network Latency in Software-Defined Networks,” Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, pp. 1-6, Dec. 9-13, 2018.
[22] S. Costanzo, I. Fajjari, N. Aitsaadi, and R. Langar, “Dynamic Network Slicing for 5G IoT and eMBB Services: A New Design with Prototype and Implementation Results,” 3rd Cloudification of the Internet of Things (CIoT), Paris, France, pp. 1-7, Jul. 2-4, 2018.
[23] I. Fajjari, N. Aitsaadi, and S. Amanou, “Optimized Resource Allocation and RRH Attachment in Experimental SDN Based Cloud-RAN,” 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, pp. 1-6, Jan. 11-14, 2019.
[24] J. Chen, M. Tsai, and L. Zhao, “Realizing Dynamic Network Slice Resource Management Based on SDN Networks,” International Conference on Intelligent Computing and its Emerging Applications (ICEA), Tainan, Taiwan, pp. 120-125, Aug. 30 - Sep. 1, 2019.
[25] T. Lin, Y. Hsu, S. Kao, and P. Chi, “OpenE2EQoS: Meter-Based Method for End-to-End QoS of Multimedia Services over SDN,” 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, pp. 1-6, Sep. 4-8, 2016.
[26] S. Zhao and D. Medhi, “SDN-Assisted Adaptive Streaming Framework for Tile-Based Immersive Content Using MPEG-DASH,” International Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Berlin, Germany, pp. 1-6, Nov. 6-8, 2017.
[27] A. Al-Issa, A. Bentaleb, T. Zinner, and I. Mkwawa, “BBGDASH: A Max-Min Bounded Bitrate Guidance for SDN Enabled Adaptive Video Streaming,” 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, pp. 307-314, Feb. 19-21, 2019.
[28] T. Hong, A. Duc, T. Nguyen, and T. Huong, “Adaptation Method for Streaming of CBR Video over HTTP Based on Software Defined Networking,” International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, pp. 16-20, Oct. 18-20, 2017.
[29] S. Han, Y. Go, H. Noh, and H. Song, “Cooperative Server-Client HTTP Adaptive Streaming System for Live Video Streaming,” International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, pp. 167-180, Jan. 9-11, 2019.
[30] A. Yaqoob, T. Bi, and G. Muntean, “A DASH-Based Efficient Throughput and Buffer Occupancy-Based Adaptation Algorithm for Smooth Multimedia Streaming,” 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, pp. 643-649, Jun. 24-28, 2019.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:開放下載的時間 available 2025-12-30

您的 IP(校外) 位址是 3.17.154.171
現在時間是 2024-05-12
論文校外開放下載的時間是 2025-12-30

Your IP address is 3.17.154.171
The current date is 2024-05-12
This thesis will be available to you on 2025-12-30.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-12-30

QR Code