Responsive image
博碩士論文 etd-0810113-122853 詳細資訊
Title page for etd-0810113-122853
論文名稱
Title
耦合無網格法與網格法在土壤結構互制行為之研究
Mathematical and numerical studies on coupled meshfree methods and meshbased methods for soil-structure interaction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
173
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-27
繳交日期
Date of Submission
2013-09-10
關鍵字
Keywords
土壤與結構互制、無網格法、非線性動力、海域平台、數值分析
Numerical analysis, Offshore structure, Non-linear dynamics, Meshfree methods, Soil-structure interaction
統計
Statistics
本論文已被瀏覽 5728 次,被下載 1073
The thesis/dissertation has been browsed 5728 times, has been downloaded 1073 times.
中文摘要
本研究的範圍是探討無網格相關數值方法,包括真無網格法(pure meshfree method)、耦合無網格法(meshfree methods)及網格法(mesh-based methods )應用於各種土壤與結構互制作用問題的有效方法評估。首先,吾人藉由探討無網格法的定義、分類及基本屬性,同時說明無網格法如何使用於科學計算領域,用以瞭解無網格法的發展趨勢。進而說明土壤與結構動力學的基本控制方程式,特別是波動方程式及結構動力非線性行為的數值和物理背景以及土壤與結構互制作用問題。其後,分別介紹兩個不同的無網格法的細節,即點插法(PIM)和無網格伽遼金法(EFGM)及其進一步發展,以解決土壤與結構互制作用的數值案例。再者為了採納無網格法和網格法的各自優點,並避免其各自缺點,推導兩種耦合的數值程序,並且介紹數個土壤與結構互制作用的代表計算例,並討論及證明新的無網格法的適用性和耦合方法,並與傳統網格法,獲得之結果相比較。在最後章節將提出本研究之結論與建議。
Abstract
The scope of this dissertation is to develop, implement and investigate some meshfree-related approaches including the pure meshfree methods and the coupling of meshfree and meshbased methods with respect to an efficient solution of var ious soil-structure interaction problems. Therefore reviews the definition, classification, and basic properties of meshfree methods. It illustrates how meshfree methods can be used in the field of scientific computation, and discusses the trends of meshfree methods are evolving. Then, basic formulations in structural dynamics are given. In particular, the wave equations and the nonlinear formulation of a dynamically excited structure reveal the mathematical as well as physical backgrounds for most soil-structure interaction problems. Then, respectively, we introduce two different meshfree methods in detail, namely the PIM and the EFGM. These two meshfree methodologies are appropriately further developed by the writer in order to solve the numerical examples on soil-structure interaction. To better deploy the advantages from the meshfree and the mesh-based methods and avoid their respective drawbacks at the same time, two coupling procedures are worked out. Some representative examples of soil-structure interaction are discussed in detail to demonstrate the applicability of the new meshfree methods and the coupling approaches. The results are all well compared with those obtained by conventional mesh-based methods. Conclusions and future perspectives will be given in final Chapter.
目次 Table of Contents
論文審定書---------------------------------------iii
誌謝------------------------------------------------iv
中文摘要------------------------------------------v
英文摘要------------------------------------------vi
符號對照表---------------------------------------xiv
第一章 緒論--------------------------------------1
1.1 動機-------------------------------------------1
1.2 概述-------------------------------------------3
1.2.1 無網格法概念-----------------------------3
1.2.2 土壤與結構互制行為--------------------5
1.3 論文內容-------------------------------------6
第二章 無網格法基本原理--------------------8
2.1 無網格法的分類----------------------------9
2.1.1 公式化程序的分類----------------------9
2.1.2 擬合技法的分類------------------------11
2.1.3 離散技法的分類------------------------13
2.2 無網格法運算程序-----------------------14
2.2.1 基本步驟---------------------------------14
2.2.2 選定支持域------------------------------18
2.2.3 建立形狀函數---------------------------19
第三章 動力控制方程式----------------------21
3.1 線彈性動力方程式------------------------21
3.2 非線性結構動力分析---------------------24
3.2.1 線性簡化原理---------------------------24
3.2.2 系統離散化原理------------------------28
3.2.3 運算程序---------------------------------30
第四章 無網格點插法-------------------------33
4.1 多項式點插法------------------------------34
4.1.1 建立形狀函數----------------------------34
4.1.2 形狀函數特性----------------------------37
4.2 徑向式點插法------------------------------39
4.2.1 建立形狀函數----------------------------39
4.2.2 形狀函數特性----------------------------43
4.3 複合方程------------------------------------43
4.4 邊界型複合式點插法---------------------47
4.4.1 邊界型多項式點插法------------------48
4.4.2 邊界型徑向式點插法-------------------50
4.4.3 離散方程----------------------------------52
4.4.4 執行評估----------------------------------54
第五章 無網格伽遼金法-----------------------56
5.1 基本方程式---------------------------------56
5.1.1 建立形狀函數----------------------------57
5.1.2 形狀函數特性----------------------------60
5.2 移動式克里金插值法----------------------62
5.2.1 克里金插值原理-------------------------62
5.2.2 移動式克里金插值原理----------------66
5.2.3 關聯性的建置----------------------------68
5.2.4 移動式克里金插值法擬合特性-------69
第六章 耦合無網格法及網格法--------------71
6.1 無網格伽遼金法與有限元素法的耦合-71
6.1.1 交界面處理-------------------------------71
6.1.2 耦合之計算機演算法-------------------74
6.2 無網格伽遼金法與邊界元素法的耦合-76
6.2.1 交界面處理-------------------------------76
6.2.2 耦合的運算程序-------------------------77
第七章 數值算例--------------------------------80
7.1 懸臂樑----------------------------------------80
7.1.1 分析流程說明----------------------------81
7.1.2 靜力分析----------------------------------104
7.1.3 動力分析----------------------------------110
7.2 土壤與單樁互制---------------------------113
7.3 土壤與群樁互制---------------------------117
7.4 土壤與簡化海域平台互制---------------120
7.4.1 地震力------------------------------------122
7.4.2 波浪力------------------------------------123
7.4.3 分析結果---------------------------------124
第八章 結論與建議----------------------------129
8.1 結論------------------------------------------129
8.2 建議------------------------------------------131
參考文獻-----------------------------------------132
附錄-----------------------------------------------144
簡歷-----------------------------------------------153
參考文獻 References
1. Altenbach, H., Schieβe, P. (1994), “Modelling of the Constitutive Behaviour of Damaged Materials”, Advances in Fracture Resistance and Structural Integrity, pp. 51-57.
2. Atluri, S.N. (2004), “The Meshless Local Petrov–Galerkin (MLPG) Method,” Tech. Science Press.
3. Atluri, S.N. and Zhu, T. (1998), “A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics,” Computational Mechanics, Vol. 22, pp. 117–127.
4. Aydinoglu, M.N. (1993), “Consistent formulation of direct and substructure methods in nonlinear soil structure interaction”. Soil Dynamics and Earthquake Engineering, Vol. 12, pp. 403–410.
5. Aydinoglu, M.N. (1993), “Development of analytical techniques in soil structure interaction, in development in dynamic soil structure interaction.” In: Gulkan P, Clough RW, editors. NATO advanced study institute. Kemer Antalya, Turkey: Kluwer Academic Publishers; pp. 25–42.
6. Bathe, K.J. (1996), “Finite Element Procedures,” Prentice-Hall, Englewood Cliffs, New Jersey.
7. Başar, Y. and Omurtag, M. H. (2000), “Free-vibration analysis of thin/thick laminated structures by layer-wise shell models”, Computers & Structures, Vol. 74, pp. 409-427.
8. Bea, R.G., “Earthquake and wave design criteria for offshore platform: evaluations of modal solutions”. Engineering Structures, Vol. 108, pp. 2175–2191 (1979).
9. Belytschko, T. and Black, T. (1999), “Elastic crack growth in finite elements with minimal remeshing,” International Journal for Numerical Methods in Engineering, Vol. 45, pp. 601–620.
10. Belytschko, T., Organ, D. and Krongauz, Y. (1995), “A coupled finite element – element free Galerkin method,” Computational Mechanics, Vol. 17, pp. 186–195.
11. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), “Element free Galerkin method,” International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229–256.
12. Bode, C., Hischauer, R. and Savidis, S. A., “Soil-structure interaction in the time domain using halfspace Green's functions,” Soil Dynamic and Earthquake Engineering, Vol. 22, pp. 283-295 (2002).
13. Brebbia, C.A. (1984), “Chapter 8 On the Unification of Finite Elements & Boundary Elements”, North-Holland Mathematics Studies, Vol. 84, pp. 185-206
14. Bui, T.Q., Nguyen, T.N. and Nguyen-Dang, H. (2009), “A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems,” International Journal for Numerical Methods in Engineering, Vol. 77, pp. 1371–1395.
15. Bui, T.Q. (2005), “Application of the Element Free Galerkin Method for Dual Analysis,” European Master’s thesis, University of Liege, Belgium.
16. Bui, T.Q. and Nguyen, M.N. (2011), “A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates”, Computer and Structures, Vol. 89, pp. 380–394.
17. Chang, P-Y et al. (2010), “VFIFE method applied for offshore template structures upgraded with damper system,” Journal of Marine Science and Technology, Vol. 18, No. 4, pp. 473-483.
18. Dai, K.Y. and Liu, G.R. (2007), “Free and forced vibration analysis using the smoothed finite element method (SFEM),” Journal of Sound and Vibration, Vol. 301, pp. 803–820.
19. Dai, Y.K., Liu, G.R., Lim, K.M. and Gu, Y.T. (2003), “Comparison between the radial point interpolation and the Kriging interpolation used in meshfree method,” Computational Mechanics, Vol. 32, pp. 60–70.
20. De, Suvranu and Bathe Klaus-Jürgen (2001), “The method of finite spheres with improved numerical integration”, Computers & Structures, Vol. 79, pp. 2183-2196.
21. Duflot, M. and Nguyen-Dang, H. (2002), “Dual analysis by a meshless method,” Communications in Numerical Methods in Engineering, Vol. 18, pp.621–631.
22. Dominguez (1993), “Boundary Element in Dynamics”, Computational Mechanics Publications, pp. 156-168.
23. von Estroff, O. and Prabucki, M. J. (1990), “Dynamic response in the time domain by coupled boundary finite elements,” Computational Mechanics, Vol. 6, pp. 35-46.
24. Fernandez-Mendez, S. and Huerta, A. (2004), “Imposing essential boundary conditions in mesh-free methods”, Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 12–14.
25. Gao, W. (2007), “Random seismic response analysis of truss structures with uncertain parameters,” Engineering Structures, Vol. 29, pp. 1487–1498.
26. Gaspar, B. and Soares C. G. (2013), “Hull girder reliability using a Monte Carlo based simulation method”, Probabilistic Engineering Mechanics, Vol. 31, pp. 65-75.
27. Gu, L. (2003), “Moving Kriging interpolation and element free Galerkin method,” International Journal for Numerical Methods in Engineering,Vol. 56, pp. 1–11.
28. Gu, Y. T. and Liu, G. R. (2001a), “A meshless local Petrov–Galerkin (MLPG) method for free and forced vibration analyses for solids,” Computational Mechanics, Vol. 27, pp. 188– 198.
29. Gu, Y. T. and Liu, G. R. (2001b), “A coupled element free Galerkin and boundary element method for stress analysis of two-dimensional solids. Computational Mechanics, Vol. 190, pp. 4405-4419.
30. Gu, Y. T. and Liu, G. R. (2002), “A boundary point interpolation method for stress analysis of solids”, Computational Mechanics, Vol.28, pp. 47-54.
31. Gu, Y. T. and Liu, G. R. (2003), “Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method”, Engineering Analysis with Boundary Elements, Vol.27, pp. 905-917.
32. Gu, Y. T. and Liu, G. R. (2005a), “A meshfree weak-strong form (MWS) method for time dependent problems,” Computational Mechanics, Vol. 35, pp. 134–145.
33. Gu, Y. T. and Liu, G. R. (2005b), “Meshless Methods Coupled with Other Numerical Methods”, Tsinghua Science & Technology, Vol. 10, pp. 8-15.
34. Gu, Y.T., Wang, Q.X. and Lam, K.Y. (2007), “A meshless local Kriging method for large deformation analyses”, Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 1673-1684.
35. Hatzigeorgiou, G. D. and Beskos, D. E. (2010), “Soil–structure interaction effects on seismic inelastic analysis of 3-D tunnels”, Soil Dynamics and Earthquake Engineering, Vol.30, pp. 851-861.
36. Huerta, A., Fernadez-Mendez, S. and Liu, W. K. (2004), “A comparison of two formulations to blend finite elements and meshfree methods”, Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 12-14.
37. Hughes, T. (1987), “The Finite Element Method – Linear Static and Dynamic Finite Element Analysis,” Prentice Hall, Englewood Cliffs, New Jersey,.
38. Jahromi, H.Z., Izzuddin, B.A. and Zdravkovic, L. (2007),” Partitioned analysis of nonlinear soil– structure interaction using iterative coupling,” Interaction and Multiscale Mechanics, Vol. 1, No. 1, pp. 33–51.
39. Karadeniz, H. (2005), “Reliability calculation of RC offshore structures inter extreme wave loading”. In: Proc. of the fifteenth international offshore and polar engineering conference, pp. 399–406.
40. Koura, K. (1998), “mproved null-collision technique in the direct simulation Monte Carlo method: Application to vibrational relaxation of nitrogen”, Computers & Mathematics with Applications, Vol. 35, pp. 139-154.
41. Lanczos,C. (1938), “Trigonometric interpolation of empirical and analytical functions”, Mathematics of Computation, Vol. 37, pp.123-199.
42. Liszka, T.J., Duarte, C.A.M., and Tworzydlo, W.W. (1996), “hp-Meshless cloud method”, Computer Methods in Applied Mechanics and Engineering, pp. 263-288.
43. Leger, P. and Boughoufalah, M. (1989),”Earthquake input mechanisms for time-domain analysis of dam-foundation systems”. Engineering Structures, Vol.11, No.1, pp. 33–46.
44. Lam, K.Y., Wang, Q.X. and Hua, Li (2004), “A novel meshless approach – Local Kriging (LoKriging) method with two-dimensional structural analysis,” Computational Mechanics, Vol. 33, pp. 235–244.
45. Lee, H.H. (1997), “Stochastic analysis for offshore structures with added mechanical damper,” Ocean Engineering, Vol. 24, No. 9, pp. 817-834.
46. Lee, H. H. (1998), “Seismic and vibration mitigation for the a-type offshore template platform system,” Structural Engineering and Mechanics, Vol. 6, No. 3, pp. 347-362.
47. Lee, H. H. and Tsai, C.-S. (1992), “Analytical model for viscoelastic dampers in seismic mitigation application,” Proceedings of the 10th World Conference on Earthquake Engineering, Vol. 4, pp. 2461-2466.
48. Lee, H. H. and Tsai, C.-S. (1994), “Analytical model of viscoelastic dampers for seismic mitigation of structures,” Computers & Structures, Vol. 50, No. 1, pp. 111-121.
49. Lee, H. H. and Wang, W.-S. (2001), “Analytical solution on the dragged surge vibration of TLPs with wave large body and small body multiinteractions,” Journal of Sound and Vibration, Vol. 248, No. 3, pp. 533-556.
50. Lee, H. H. and Wang, W.-S. (2003), “On the dragged surge vibration of a twin TLP system with multi-interactions of wave and structures,” Journal of Sound and Vibration, Vol. 263, pp. 743-774.
51. Li, H., Wang, Q.X. and Lam, K.Y. (2004), “Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis,” Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 2599–2619.
52. Liu, G. R. and Gu, Y. T. (2001a), ” A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids”, Journal of Sound and Vibration, Vol.246, pp. 29-46.
53. Liu, G. R. and Gu, Y. T. (2001b), “A local point interpolation method for stress analysis of twodimensional solids,” Structural Engineering and Mechanics, Vol. 11, pp. 221–236.
54. Liu, G. R. (2002), “Meshfree Methods, Moving Beyond the Finite Element Method,” CRC Press, U.S.A.,.
55. Liu, G.R. and Gu, Y. T. (2004), “Boundary meshfree methods based on the boundary point interpolation methods”, Engineering Analysis with Boundary Elements, Vol. 28, pp. 475-487.
56. Liu, G. R., Gu, Y. T. (2004), “Meshfree weak-strong (MWS) form method and its application to incompressible flow problem”, International Journal for Numerical Methods in fluids, Vol. 46, pp. 1025-1047.
57. Liu, G.R. and Nguyen-Thoi, T. and Lam, K.Y. (2009), “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids,” Journal of Sound and Vibration,Vol. 320, pp. 1100–1130.
58. Liu, W. K., Jun, S., Zhang, Y. F. (1995), “Reproducing kernel particle methods”, International Journal for Numerical Methods in Engineering, Vol. 20, pp. 1081-1106.
59. Lucy, L. (1977), “A numerical approach to testing the Fission hypothesis”, Astronomics Journal, Vol. 82, pp. 1013-1024.
60. Lysmer, J., Kuhlemeyer, R.L. (1969), “Finite dynamic model for infinite media,” Journal of Engineering Mechanics Division, ASCE, Vol.95 (EM4), pp. 859–77.
61. Malhotra, A.M. and Penzien, J. (1970), “Non deterministic analysis of offshore structure,” Engineering Fracture Mechanics, Vol. 6, pp. 997–1000.
62. Marek, P., (1998) “Sensitivity analysis in simulation based reliability assessment of structure,” Reliability Engineering and System Safety, Vol. 2, pp. 715–721.
63. Melenk, J.M., Babuška I. (1996), “The partition of unity finite element method”, Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 289-314.
64. Moarefzadeh, M.R. and Melchers, R.E. (1996), “Sample-specific linearization in reliability analysis of offshore structures,” Structural Safety Vol. 18, No. 2/3, pp. 101-122.
65. Moes, N. and Dolbow, J. and Belytschko, T. (1999), “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, Vol. 46, pp. 131–150.
66. Monaghan, J. J. (1992), “Smoothed particle hydrodynamics”, Annual Revision of Astronomics and Astrophysics, Vol. 30, pp. 543-574.
67. Mukherjee, S., Chati, M. K. and Shi, X. (2000), “Evaluation of nearly singular integrals in boundary element contour and node methods for three-dimensional linear elasticity”, International Journal of Solids and Structures, Vol. 37, pp. 7633-7654.
68. Mukherjee, Y. X., Mukherjee, S. (1997), “Boundary node method for potential problem”, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 797-815.
69. Nayroles, B., Touzot, G., Villon, P. (1994), “Using the Diffuse Approximation for Optimizing the Location of Anti-Sound Sources”, Journal of Sound and Vibration, Vol. 171, pp. 1-21.
70. Nayroles, B., Touzot, G., Villon, P. (1997), “Generalizing the finite element method: diffuse approximation and diffuse elements”, Computational Mechanics, Vol. 10, pp. 307-318.
71. Nguyen-Thanh, N. and Rabczuk, T. and Nguyen-Xuan, H. and Bordas, S.P.A. (2010), “An alternative alpha finite element method (AaFEM) for free and forced structural vibration using triangular meshes,” Journal of Computational and Applied Mathematics, Vol. 233, pp. 2112–2135.
72. Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L. and Sacco C. (1996), “A stabilized finite point method for analysis of fluid mechanics problems”, Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 315-346.
73. Oñate, E., Perazzo F. and Miquel, J. (2001), “A finite point method for elasticity problems”, Computers & Structures, Vol. 79, pp. 2151-2163.
74. Park, M.S. et al. (2011) “Dynamic response analysis of an offshore platform due to seismic motions,” Engineering Structures, Vol. 33, pp. 1607–1616.
75. Penzien, J. and Kaul, M.K. and Berge, B. (1972), “Stochastic response of offshore towers to random sea waves and strong motion earthquake”. Computer and Structures, Vol. 2, pp. 733–59.
76. Rizos, D.C., Wang, Z. (2002) “Coupled BEM–FEM solutions for direct time domain soil– structure interaction analysis,” Engineering Analysis with Boundary Elements, Vol. 26, pp. 877–888..
77. Ryu, C.S. (1997), “Nonstationary response analysis of offshore guyed tower subjected to earthquake loading”. Engineering Structures, Vol. 19, pp. 63–70.
78. Šalkauskas, K. (1992), “Moving least squares interpolation with thin-plate splines and radial basis functions”, Computers & Mathematics with Applications, Vol. 24, pp. 177-185.
79. Sayakoummane, V. and Kanok-Nukulchai, W. (2007), “A meshless analysis of shells based on moving Kriging interpolation,” International Journal of Computational Methods, Vol. 4, pp. 543–565.
80. Shigeta, Takemi and Young, D.L. (2011), “Mathematical and numerical studies on meshless methods for exterior unbounded domain problems”, Journal of Computational Physics, Vol. 230, pp. 6900-6915.
81. Sladek, J., Sladek, V. and Zhang, Ch. (2003), “Application of meshless local Petrov–Galerkin (MLPG) method to elastodynamic problems in continuously nonhomogeneous solids,” Computer Modeling in Engineering and Sciences, Vol. 4 , pp. 637–647.
82. Sladek, J, Sladek, V. and Zhang, Ch. (2005), “An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials,” Computational Materials Science,Vol. 32 ,pp. 532–543.
83. Sladek, J. and Sladek, V. and Zhang, Ch. (2005), “A meshless local boundary integral equation method for dynamic anti-plane shear crack problem in functionally graded materials,” Engineering Analysis with Boundary Element, Vol. 29, pp. 334–342.
84. Sladek, J., Sladek, V., Krivacek, J., Wen, P. and Zhang, Ch. (2007), “Meshless local Petrov– Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 2681– 2691.
85. Sladek, J., Sladek, V., Zhang, Ch. and Solek, P. (2008), “Static and dynamic analysis of shallow shells with functionally graded and orthotropic material properties,” Mechanics of Advanced Materials and Structures, Vol. 15, pp. 142–156.
86. Sladek, J., Sladek, V., Stanak, P. and Zhang, Ch. (2010), “Meshless local Petrov–Galerkin (MLPG) method for laminate plates under dynamic loading,” Computers, Materials & Continua, Vol. 15, pp. 1–26.
87. Snell, C., Vesey, D.G. and Mullord P. (1981), “The application of a general finite difference method to some boundary value problems”, Computers & Structures, Vol.13, pp. 547-552.
88. Tongsuk, P. and Kanok-Nukulchai, W. (2004), “On the parametric refinement of moving Kriging interpolations for element free Galerkin method,” In: Computational Mechanics WCCM VI in Conjunction with APCOM’04, Septembeer 5–10, Beijing, China.
89. Tongsuk, P. and Kanok-Nukulchai, W. (2004), “Further investigation of element free Galerkin method using moving Kriging interpolation,” International Journal of Computational Methods, Vol. 1, pp. 1–21.
90. Wang, J. G., Liu, G. R. (2002), “A point interpolation meshless method based on radial basis functions”, International Journal for Numerical Methods in Engineering, 2002, Vol. 51, pp. 1623-1648.
91. Westergaard, H.M. (1933), “Water pressures on dams during earthquakes,” Transactions of the ASCE, Vol.98, pp. 418–72.
92. White, W., Valliappan, S., Lee, I.K. (1977), “Unified boundary for finite dynamic models,” Journal of Engineering Mechanics Division, ASCE, Vol. 103, pp.949–64.
93. Wolf, J.P. (1985), “Dynamic soil structure interaction”. New Jersey: Prentice Hall, Inc., Englewood Cliffs..
94. Wolf, J.P. (1988), “Soil structure interaction analysis in time domain”. New Jersey: Prentice Hall, Inc., Englewood Cliffs.
95. Wenterodt, C. and von Estorff, O. (2011), “Optimized meshfree methods for acoustics”, Computer Methods in Applied Mechanics and Engineering, Vol. 200, pp. 2223-2236.
96. Yamada, Y., Kawano, K., Iemura, H. and Venkataramana, K., “Wave and earthquake response of offshore structure with soil–structure interaction”. Proc JSCE, Structure Engineering and Earthquake Engineering, Vol. 5, No. 2, pp. 361–370 (1988).
97. Shigeta, T. and Young, D.L. (2011), “Mathematical and numerical studies on meshless methods for exterior unbounded domain problems”, Journal of Computational Physics, Vol. 230, pp. 6900-6915.
98. Zienkiewicz, O.C. and Taylor, R.L. (2000), “The Finite Element Method”, Fifth edition, Butterworth-Heinemann, Oxford.
99. Yee, K. S. (1966),”Boundary element method”, IEEE Trans. Antennas Propagat., Vol. AP-14, pp. 302-307.
100. Zhu, T., Zhang, J. D., Atluri, S. N. (1998), “Local boundary intergral equation (LBIE) method in computational mechanics, and a meshless discretization approach”, Computational Mechanics, Vol. 21.
101. Zhu, T., Zhang, J. D., Atluri, S. N. (1999), “A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems”, Engineering Analysis with Boundary Elements, Vol.23, pp. 375-389.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code