Responsive image
博碩士論文 etd-0802121-031104 詳細資訊
Title page for etd-0802121-031104
論文名稱
Title
5G行動通訊網路的uRLLC換手機制
A Handover Mechanism for uRLLC in 5G Mobile Communication Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-08-18
繳交日期
Date of Submission
2021-09-02
關鍵字
Keywords
5G、高可靠度、低延遲、換手機制、uRLLC
5G, High Reliability, Low Latency, Handover mechanism, uRLLC
統計
Statistics
本論文已被瀏覽 661 次,被下載 0
The thesis/dissertation has been browsed 661 times, has been downloaded 0 times.
中文摘要
在5G 無線通訊網路中,傳統的換手機制會根據UE回報的RSRP (Reference Signal Receiving Power)作為換手的依據,當gNB處於負載較高的狀態時,此機制無法將uRLLC (Ultra-reliable and Low Latency Communications)應用的UE換手到適合的基地台來滿足UE的要求,為了要解決這個問題,本論文提出了一個新的uRLLC換手機制,UE會週期性的將BLER與RTT回報給gNB,gNB會根據UE回報的BLER與RTT計算出gNB的品質指標(gNB Quality Index, GQI),當UE判斷所連接的gNB無法滿足uRLLC應用的需求時,UE會計算出UE的品質指標(UE Quality Index, UQI)並傳送給5GC,5GC根據UE回報的UQI與gNB回報的GQI並透過uRLLC換手演算法找出最適合的gNB,首先我們使用OAI平台實作所提出的uRLLC換手機制,接著我們使用NS-3來模擬此機制,從模擬的結果證明使用我們的機制比使用原本的換手機制更能有效的降低UE的BLER、RTT與封包遺失率。
Abstract
In 5G wireless communication network, the traditional Handover mechanism use RSRP (Reference Signal Receiving Power) reported by UE as a trigger. However, this mechanism cannot satisfy the uRLLC (Ultra-reliable and Low Latency Communications) requirements when the Serving gNB is in high loading. In order to solve this problem, this thesis propose an uRLLC handover mechanism, In this mechanism, UE will periodically report BLER and RTT to gNB, and the gNB will calculate the GQI (gNB Quality Index) based on the value reported by the UE. When the UE found that the Serving gNB can no longer satisfy the requirements of the uRLLC, UE will calculate the UQI (UE Quality Index) and send it to 5GC. When 5GC receive UQI, it will trigger the uRLLC handover Algorithm and find the best target gNB for UE to handover based on UQI and GQI. We first use OAI platform to implement our uRLLC Handover Mechanism. Then, we use NS-3 to simulate our mechanism. The simulation results prove that our mechanism is more effective to reduce the UE's BLER, RTT, and packet loss rate when comparing with the traditional Handover Mechanism.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 導論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 章節介紹 3
第二章 5G行動通訊網路與uRLLC 4
2.1 5G行動通訊網路 4
2.1.1 NSA and SA 4
2.1.2 Open-RAN 6
2.1.3 5GC 7
2.2 uRLLC的特性與應用 8
2.2.1 uRLLC的應用 8
2.2.2 uRLLC的特性 9
2.2.2.1 低延遲 9
2.2.2.2 高可靠度 10
2.3 使用RTCP計算RTT 11
2.4 BLER的計算 14
2.5 文獻探討 16
第三章 uRLLC的基地台換手機制 20
3.1基地台換手的系統架構 20
3.2 RTT計算模組 23
3.3 換手要求模組 26
3.4 QI計算模組 27
3.4.1 GQI計算模組 27
3.4.2 UE的QI計算模組 29
3.5 UCM Header的欄位設計 30
3.6 uRLLC換手模組 33
第四章 實作與模擬結果 40
4.1 實驗環境與設備規格 40
4.2 UHA的模擬 42
4.2.1 三種不同應用的拓樸 56
4.2.1.1 三種不同應用的拓樸的參數 57
4.2.1.2 三種不同應用的拓樸的結果 58
4.2.2 三種不同重疊區的拓樸 61
4.2.2.1 三種不同重疊區的拓樸的參數 62
4.2.2.2 三種不同重疊區的拓樸的結果 62
4.3 傳送UCM的Overhead 67
第五章 結論與未來工作 71
5.1 結論 71
5.2 遭遇的困難 72
5.3 未來工作 72
Reference 74
Acronyms 78
Index 80
參考文獻 References
[1] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio Access Technology; Radio Access Architecture and Interfaces (Release 14),” 3GPP TR 38.801, Ver. 2.0.0, Mar. 2017.
[2] P. Sehier, P. Chanclou, N. Benzaoui, D. Chen, K. Kettunen, M. Lemke, Y. Pointurier, and P. Dom, “Transport Evolution for the RAN of the Future,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 11, Issue 4, pp. B97 - B108, Apr. 2019.
[3] “O-RAN: Towards an Open and Smart RAN,” O-RAN Alliance, White Paper, Oct. 2018.
[4] M. Säily, C. B. Estevan, J. J. Gimenez, F. Tesema, W. Guo, D. G. Barquero, and D. Mi, “5G Radio Access Network Architecture for Terrestrial Broadcast Services,” IEEE Transactions on Broadcasting, Vol. 66, Issue 2, pp. 404 - 415 May 13, 2020.
[5] “5G; System Architecture for the 5G System (5GS),” 3GPP, TS 23.501, Ver. 16.6.0, Release 16, Oct. 2020.
[6] J. J. D. Rivera, T. A. Khan, A. Mehmood, and W. C. Song, “Network Slice Selection Function for Data Plane Slicing in a Mobile Network,” 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, pp. 1-4, Sept. 18-20, 2019.
[7] “Minimum Requirements Related to Technical Performance for IMT-2020 Radio Interface(s),” Report ITU-R, M. 2410-0, Sept. 2017.
[8] “New Services & Applications with 5G Ultra-Reliable Low Latency Communications,” 5G Americas, White Paper, Nov. 2018.
[9] T. Fehrenbach, R. Datta, B. Gӧktepe, T. Wirth, and C. Hellge, “URLLC Services in 5G Low Latency Enhancements for LTE,” 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, pp. 1-6, Aug. 27-30, 2018.
[10] H. N. Qureshi, M. Manalastas, S. M. A. Zaida, and M. O. A. Kalaa, “Service Level Agreements for 5G and Beyond: Overview, Challenges and Enablers of 5G-Healthcare Systems,” IEEE Access, Vol. 9, pp. 1044-1061, Dec. 23, 2020.
[11] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Scenarios and Requirements for Next Generation Access Technologies; (Release 16),” 3GPP TR 38.801, Ver. 16.0.0, July 2020.
[12] M. Centenaro, D. Laselva, J. Steiner, K. Pedersen, and P. Mogensen, “System-Level Study of Data Duplication Enhancements for 5G Downlink URLLC,” IEEE Access, Vol. 8, pp. 565-578, Dec. 23, 2019.
[13] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 3550, July 2003.
[14] “5G; Study on New Radio (NR) Access Technology,” 3GPP TR 38.912, Ver. 15.0.0, Release 15, Sept. 2018.
[15] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Services Provided by the Physical Layer,” 3GPP TS 36.302, Ver. 9.0.0, Feb. 2010.
[16] “Universal Mobile Telecommunications System (UMTS); User Equipment (UE) Conformance Specification; Radio Transmission and Reception (FDD); Part 1: Conformance Specification,” 3GPP TS 34.121-1, Ver. 10.5.0, Release 10, Feb. 2013.
[17] L. Zhao, X. Chi, and Y. Zhu, “Martingales-Based Energy-Efficient D-ALOHA Algorithms for MTC Networks With Delay-Insensitive/URLLC Terminals Co-Existence,” IEEE Internet of Things Journal, Vol. 5, Issue 2, pp. 1285 – 1298, Jan.17, 2018.
[18] P. Korrai, E. Lagunas, S. Sharma, A. Bandi, S. Chatzinotas, and B. Ottersten, “Random Beam-based Random Access for Low-Latency Device-to-Device Communication Systems,” IEEE Access, Vol. 8, pp. 79887-79895, Apr. 27, 2020
[19] J. Seo, W. Tariq, and T. H. Jin, “Analysis of Two-Step Random Access Procedure for Cellular Ultra-Reliable Low Latency Communications,” IEEE Access, Vol. 9, pp. 5972-5985, Jan. 1, 2021.
[20] V. Mishra, D. Das, and N. N. Singh, “Novel Algorithm to Reduce Handover Failure Rate in 5G Networks,” 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, pp. 1-6, Sept. 10-12, 2020.
[21] H. S. Park, Y. Lee, T. J. Kim, B. C. Kim, and J. Y. Lee, “Handover Mechanism in NR for Ultra-Reliable Low-Latency Communications,” IEEE Network, Vol. 32, Issue 2, pp.41-47, Apr. 2, 2018.
[22] H. S. Park, Y. Lee, T. J. Kim, B. C. Kim, and J. Y. Lee, “Faster Recovery from Radio Link Failure during Handover,” IEEE Communications Letters, Vol. 24, Issue 8, pp. 1835-1839, Aug. 2020.
[23] A. Karimi, K. I. Pedersen, and P. Mogensen, “5G URLLC Performance Analysis of Dynamic-Point Selection Multi-User Resource Allocation,” 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, pp. 1-5, Aug. 27-30, 2019.
[24] H. Malik, M. M. Alam, Y. L. Moullec, and Q. Ni, “Interference-Aware Radio Resource Allocation for 5G Ultra-Reliable Low-Latency Communication,” 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, pp. 1-6, Dec. 9-13, 2018.
[25] V. Hytӧnen, Z. Li, B. Soret, and V. Nurmela, “Coordinated Multi-Cell Resource Allocation for 5G Ultra-Reliable Low Latency Communications,” 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, pp. 1-5, June 12-15, 2017.
[26] S. R. Pandey, M. Alsenwi, Y. K. Tun, and C. S. Hong, “A Downlink Resource Scheduling Strategy for URLLC Traffic,” 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, pp. 1-6, Feb. 27- Mar. 2, 2019.
[27] A. Anand, G. Veciana, and S. Shakkottai, “Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks,” IEEE/ACM Transactions on Networking, Vol. 28, Issue 2, pp. 477-490, Feb. 25, 2020.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-09-02
校外 Off-campus:開放下載的時間 available 2026-09-02

您的 IP(校外) 位址是 18.191.234.62
現在時間是 2024-05-11
論文校外開放下載的時間是 2026-09-02

Your IP address is 18.191.234.62
The current date is 2024-05-11
This thesis will be available to you on 2026-09-02.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-09-02

QR Code