論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:開放下載的時間 available 2026-08-27
論文名稱 Title |
在 4G/5G EN-DC網路下做動態分流的機制 A Dynamic Stream-Splitting Scheme on 4G/5G EN-DC Networks |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
78 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-08-18 |
繳交日期 Date of Submission |
2021-08-27 |
關鍵字 Keywords |
EN-DC、動態分流、負載平衡、排隊延遲、封包遺失率 EN-DC, Dynamic Split, Load Balance, Queuing Delay, PLR |
||
統計 Statistics |
本論文已被瀏覽 673 次,被下載 1 次 The thesis/dissertation has been browsed 673 times, has been downloaded 1 times. |
中文摘要 |
為了讓UE能夠同時使用LTE (Long Term Evolution)與5G NR (New Radio)的無線資源,3GPP (3rd Generation Partnership Project)提出了EN-DC (E-UTRAN New Radio - Dual Connectivity)的技術,但是當eNB發生壅塞時,如果沒有使用動態分流會導致eNB的PLR (Packet Loss Ratio)上升與UE的Throughput下降,為了解決這些問題,本論文在EN-DC網路下提出一個動態分流的機制(Dynamic Stream-Splitting Scheme, DSSS),在此機制中,我們分別在eNB、 EPC與gNB新增負載計算演算法、動態分流演算與接收分流演算法。在負載計算演算法中,當UE向影音串流伺服器發送一個Data Rate要求時,eNB會攔截此要求並計算自己的負載百分比,當eNB的負載百分比大於一個閥值時,eNB會向EPC發送影音串流的分流要求。在動態分流演算法中,當EPC收到eNB所發送的分流要求時,動態分流演算法會產生一個分流訊息並廣播給所有的gNB,此時EPC會等待符合分流條件的gNB的回報,當EPC接收到gNB的回報時,EPC會將需分流的Data Rate發送到這些gNB。在接收分流演算法中,當gNB接收到EPC所發送的分流廣播訊息時,符合分流條件的gNB會向EPC回報gNB ID與負載百分比來做分流。最後我們使用OAI平台實作DSSS並使用NS-3來模擬DSSS的效能,從模擬結果中,我們證明本機制可以達到負載平衡,並且有效改善排隊延遲、封包遺失率與Throughput。 |
Abstract |
In order to enable UE to use both LTE (Long Term Evolution) and 5G NR (New Radio), 3GPP (3rd Generation Partnership Project) proposed EN-DC (E-UTRAN New Radio-Dual Connectivity). When congestion occurs in the eNB and dynamic splitting is not used, the PLR (Packet Loss Ratio) of the eNB will increase and the throughput of the UE will decrease. In order to solve these problems, in this thesis we present a DSSS (Dynamic Stream-Splitting Scheme) in the EN-DC networks. In this scheme, we add load computing algorithm, dynamic splitting algorithm, and split-receiving algorithm to eNB, EPC, and gNB, respectively. When the UE sends a data rate request to the streaming server, the eNB will intercept the request and compute its load ratio. When the eNB's load ratio exceeds a threshold, the eNB will send a splitting request to the EPC. In the dynamic splitting algorithm, when the EPC receives the splitting request sent by the eNB, the dynamic splitting algorithm will generate a splitting message and broadcast to all gNBs. The EPC will wait for the reply from the gNB that meets the splitting conditions. When receiving the gNB's reply, the EPC will send the data rate to split to these gNBs. In the split-receiving algorithm, when the gNB receives the splitting broadcast message sent by the EPC, the gNB that meets the splitting conditions will reply the gNB ID and the load ratio to the EPC. Finally, we use the OAI platform to implement DSSS and use NS-3 to simulate the performance of DSSS. From the simulation results, we prove that this scheme can achieve load balance and significantly improve queuing delay, PLR and throughput. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 導論 1 1.1 研究動機 1 1.2 研究方法 2 1.3 章節介紹 3 第二章 EN-DC的4G/5G網路 4 2.1 4G LTE vs 5G NR 4 2.1.1 SA vs NSA 6 2.1.2 EN-DC 8 2.2 LTE與NR的多工技術 9 2.2.1 LTE的OFDMA Frame架構 9 2.2.2 NR的OFDMA Frame架構 12 2.3 頻域上的RB分配 17 2.4 影音串流的動態分流 19 2.5 相關研究 21 2.6 本論文機制 23 第三章 EN-DC的動態分流機制 26 3.1 動態分流的系統架構 26 3.2 三種控制訊息 29 3.2.1 Split-Notification Message 29 3.2.2 Load Status Report Message 30 3.2.3 Split-Decision Message 30 3.3 eNB的負載計算演算法 31 3.4 EPC的動態分流演算法 35 3.5 gNB的接收分流演算法 38 第四章 實作與模擬 43 4.1 實驗環境與設備規格 43 4.1.1修改sub-6 GHz的程式 45 4.1.2 新增負載百分比的程式 47 4.2 NS-3模擬 48 4.2.1 NS-3的軟體架構 48 4.2.2 NS-3模擬拓樸與參數設定 50 4.2.3 模擬結果與討論 52 4.2.3.1 負載百分比的變化 53 4.2.3.2 改變Arrival Rate的效能 54 4.3 時間複雜度 57 第五章 結論與未來工作 58 5.1 結論 58 5.2 遭遇問題 59 5.3 未來工作 59 Reference 60 Acronyms 65 Index 66 |
參考文獻 References |
[1] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. D. Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice,” IEEE Journal on Selected Areas in Communications, Vol. 35, No. 6, pp. 1201-1221, June 2017. [2] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2,” 3GPP TS 36.300, Ver. 14.2.0, Apr. 2017. [3] “LTE; Requirements for Further Advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced),” 3GPP TR 36.913, Ver. 15.0.0, Sept. 2018. [4] “5G; Study on Scenarios and Requirements for Next Generation Access Technologies,” 3GPP TR 38.913, Ver. 15.0.0, Release 15, Sept. 2018. [5] “5G; Study on New Radio (NR) Access Technology,” 3GPP TR 38.912, Ver. 15.0.0, Release 15, Sept. 2018. [6] M. G. Kibria, K. Nguyen, G. P. Villardi, K. Ishizu, and F. Kojima, “Next Generation New Radio Small Cell Enhancement: Architectural Options, Functionality and Performance Aspects,” IEEE Wireless Communications, Vol. 25, No. 4, pp. 120-128, Apr. 2018. [7] R. P. Antonioli, G. C. Parente, C. F. E Silva, E. B. Rodrigues, T. F. Maciel, and F. R. P. Cavalcanti, “Dual Connectivity for LTE-NR Cellular Networks: Challenges and Open Issues,” Journal of Communication and Information Systems, Vol. 33, No.1, Aug. 2018. [8] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation,” 3GPP TS 36.211, Ver. 14.2.0, Mar. 2017. [9] P. K. Rekhi, M. Luthra, S. Malik, and R. Atri, “Throughput Calculation for LTE TDD and FDD Systems,” White paper, pp. 1-11, Dec. 2012 [10] “5G; NR; Physical Channels and Modulation,” 3GPP TS 38.211, Ver. 15.4.0, Apr. 2018. [11] “5G; NR; Physical Layer Procedures for Data,” 3GPP TS 38.214, Ver. 15.3.0, Oct. 2018. [12] “5G; NR; Radio Resource Control (RRC); Protocol Specification,” 3GPP TS 38.311, Ver. 15.2.1, June 2018. [13] P. Megyesi, Z. Krämer, and S. Molnár, “How Quick is QUIC?,” IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, July 2016. [14] A. Mondal and S. Chakraborty, “Does QUIC Suit Well With Modern Adaptive Bitrate Streaming Techniques?,” IEEE Networking Letters, Vol. 2, No. 2, pp. 85-89, June 2020. [15] W. Stallings, “Computer Networking with Internet Protocols and Technology,” Prentice Hall, Aug. 2003. [16] M. Moltafet, R. Joda, N. Mokari, M. R. Sabagh, and M. Zorzi “Joint Access and Fronthaul Radio Resource Allocation in PD-NOMA-Based 5G Networks Enabling Dual Connectivity and CoMP,” IEEE Transactions on Communications, Vol. 6, No. 12, pp. 6463-6477, Dec. 2018. [17] S. Cai, Y. Che, L. Duan, J. Wang, S. Zhou, and R. Zhang, “Green 5G Heterogeneous Networks Through Dynamic Small-Cell Operation,” IEEE Journal on Selected Areas in Communications, Vol. 34, No. 5, pp. 1103-1115, May 2016. [18] S. M. Rayavarapu, S. D. Amuru, and K. Kuchi, “Dynamic Control of Packet Duplication in 5G-NR Dual Connectivity Architecture,” International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, Jan. 2020. [19] R. A. Paropkari, A. A. Gebremichail, and C. Beard, “Fractional Packet Duplication and Fade Duration Outage Probability Analysis for Handover Enhancement in 5G Cellular Networks,” International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, Feb. 2019. [20] M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi, “Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks,” IEEE Journal on Selected Areas in Communications, Vol. 35, No. 9, pp. 2069-2084, Sept. 2017. [21] P. J. Hsieh, W. S. Lin, K. H. Lin, and H. Y. Wei, “Dual-Connectivity Prevenient Handover Scheme in Control/User-Plane Split Networks,” IEEE Transactions on Vehicular Technology, Vol. 67, No. 4, pp. 3545-3560, Apr. 2018. [22] H. Kim and K. Chung, “Design of Adaptive Offloading Framework for Video Streaming Over 5G NR with Multipath TCP,” IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, Oct. 2019. [23] V. G. Nguyen, K. J. Grinnemo, J. Taheri, and A. Brunstrom, “On Load Balancing for a Virtual and Distributed MME in the 5G Core,” 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, Sept. 2018. [24] K. Nguyen, M. G. Kibria, J. Hui, K. Ishizu, and F. Kojima, “Minimum Latency and Optimal Traffic Partition in 5G Small Cell Networks,” 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, June 2018. [25] H. Beshley, M. Kyryk, M. Beshley, and O. Panchenko, “Method of Information Flows Engineering and Resource Distribution in 4G/5G Heterogeneous Network for M2M Service Provisioning,” 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Lviv, Ukraine, Sept. 2018. [26] S. K. Padaganur and J. D. Mallapur, “Load Sharing based on Optimized QoS Parameters for Heterogeneous Networks,” 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, Mar. 2018. [27] L. Liu, S. Chan, G. Han, M. Guizani, and M. Bandai, “Performance Modeling of Representative Load Sharing Schemes for Clustered Servers in Multiaccess Edge Computing,” IEEE Internet of Things Journal, Vol. 6, No. 3, pp. 4880-4888, June 2019. [28] C. Tata, M. Kadoch, Z. Chang, J. Lu and R. Liu, “CoopeRA: Cooperator Resource Allocation Algorithm based On Clustering and D2D Transmissions in LTE Heterogeneous Networks and 5G networks,” 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, June 2020. [29] V. G. Nguyen, K. J. Grinnemo, J. Taheri, and A. Brunstrom, “Adaptive and Latency-aware Load Balancing for Control Plane Traffic in the 4G/5G Core,” 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, June 2021. [30] M. Yoon, C. Lee and W. Ko, “An Efficient 5G Redirection Scheme Interworking with Legacy Networks,” 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), Oct. 2020. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus:開放下載的時間 available 2026-08-27 您的 IP(校外) 位址是 3.14.135.82 現在時間是 2024-11-23 論文校外開放下載的時間是 2026-08-27 Your IP address is 3.14.135.82 The current date is 2024-11-23 This thesis will be available to you on 2026-08-27. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-27 |
QR Code |