Responsive image
博碩士論文 etd-0725119-192657 詳細資訊
Title page for etd-0725119-192657
論文名稱
Title
又愛又「怕」:態度一致性對智慧音箱的影響
Love and“Fear”: The Influence of Attitude Consistency on Smart Speakers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-31
繳交日期
Date of Submission
2019-08-25
關鍵字
Keywords
人工智慧焦慮、態度一致性、偏見同化、不文明、口碑、可信度、社會線索
credibility, incivility, social clues, artificial intelligence anxiety, bias assimilation, attitude consistency, word-of-mouth
統計
Statistics
本論文已被瀏覽 5815 次,被下載 56
The thesis/dissertation has been browsed 5815 times, has been downloaded 56 times.
中文摘要
近幾年,人工智慧快速崛起與發展,受到各領域的強烈關注,人們對人工智慧的態度逐漸兩極。身在網路與社群媒體大力當道的年代,消費者對新產品的購買決策非常容易受到網路口碑的影響。本研究為調查態度一致性如何藉由網路口碑可信度影響消費者回應,採用實驗法並招募665名受測者進行實驗。本研究發現,留言口碑態度一致性會正向影響留言口碑可信度。評價文態度一致性會正向影響評價文可信度。社會線索會弱化人工智慧焦慮的干擾效果。留言口碑態度一致性會經由留言口碑可信度正向影響產品購買意願。評價文態度一致性會經由評價文可信度正向影響人工智慧產品接受度與產品購買意願。本研究結果拓展網路口碑之研究範疇,並確立態度一致性為不可忽視的影響因素,同時為可信度、不文明與人工智慧焦慮做出貢獻。最後,本研究提供企業相關實務建議。
Abstract
In recent years, the rapid rise and development of artificial intelligence has received strong attention in various fields. People's attitude toward artificial intelligence has gradually become polarized. When the internet and social media spread widely, consumers' purchase decisions for new products were relied to online word-of-mouth. The study investigated how attitude consistency affects consumer responses through online word-of-mouth credibility, using experimental methods and recruiting 665 subjects for experimentation. The study found that the attitude consistency of the message word-of-mouth will positively affect the credibility of the message word-of-mouth. The attitude consistency of the evaluation will positively affect the credibility of the evaluation. Social clues will weaken the interference effect of the artificial intelligence anxiety. The attitude consistency of the message word-of-mouth will positively influence the purchase intention through the credibility of the message word-of-mouth. The attitude consistency of the evaluation will positively influence the acceptance of artificial intelligence products and the purchase intention through the credibility of the evaluation. The results of this study expand the research scope of online word-of-mouth and establish the importance of attitude consistency. Finally, this study provides business with practical advice.
目次 Table of Contents
論文審定書................................................................................................ i
中文摘要................................................................................................... ii
英文摘要.................................................................................................. iii
壹、緒論..................................................................................................1
第一節 研究背景..............................................................................1
第二節 研究動機..............................................................................2
第三節 研究目的.............................................................................5
貳、文獻回顧..........................................................................................5
第一節 智慧音箱.............................................................................5
第二節 網路口碑.............................................................................6
第三節 基模與認知偏見.................................................................8
第四節 不文明...............................................................................12
第五節 人工智慧焦慮...................................................................16
第六節 社會線索...........................................................................23
第七節 可信度...............................................................................25
第八節 消費者回應.......................................................................27
參、研究方法........................................................................................28
第一節 研究架構...........................................................................28
第二節 研究假說............................................................................29
第三節 研究方法............................................................................32
肆、統計檢定........................................................................................39
第一節 描述性統計.......................................................................39
第二節 操弄性檢驗.......................................................................41
第三節 信效度分析.......................................................................41
第四節 假說檢驗...........................................................................44
伍、 結論與建議.....................................................................................62
第一節 研究結論............................................................................62
第二節 研究貢獻...........................................................................64
參考文獻..................................................................................................68
附錄..........................................................................................................79
參考文獻 References
中文文獻
Fionamurmur (2018年12月11日)。品牌行銷大哉問-新世代小觀察。Medium。 取自https://medium.com/@FIONAL/6651b9f8fd32
OpView社群口碑資料庫(2019年6月13日)。「大數據開講Bar」解析網路口碑與社群聆聽–會後整理。取自https://www.opview.com.tw/activity-highlights/20190617/10519
方舟(2018年3月23日)。機器人又爆兇訊:人類一個都跑不掉。新唐人電視台。取自https://www.ntdtv.com/b5/2018/03/23/a1368645.html
王宇豪 (2017年12月27日)。不得不思考的人工智慧風險。科技產業資訊室。取自http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=14069
田智弘 (2018年11月7日)。TrendForce:2019年全球智慧音箱出貨量預估達9,525萬台,年增率達53%。TrendForce。取自https://press.trendforce.com.tw/node/view/3832.html
何佩珊 (2019年1月16日)。微網紅冒尖。今周刊,1152。取自https://www.businesstoday.com.tw/article/category/154686/post/201901160024/%E5%BE%AE%E7%B6%B2%E7%B4%85%E5%86%92%E5%B0%96
吳明隆(2017)。SPSS 操作與應用: 問卷統計分析實務。五南圖書出版股份有限公司.
李彥瑾(2019年5月20日)。研調:中國超越美國成智慧音箱第一大市場。MoneyDJ新聞網。取自https://www.moneydj.com/KMDJ/News/NewsViewer.aspx?a=4f10c24b-dcac-4762-a299-c2c89f5c9555&c=MB070100
李靖宇(2017年9月8日)。召喚惡魔!人工智慧恐毀滅人類。大紀元。取自http://www.epochtimes.com/b5/17/9/8/n9611030.htm
陳寬裕&王正華(2010)。結構方程模型分析實務: AMOS 的運用。臺北: 五南圖書出版股份有限公司.
陳靜君&陶振超(2018)。偏見同化效果:網路新聞不文明留言對態度極化的影響。中華傳播學刊, (33), 137-179.
陳顥仁(2018年12月17日)。可怕的「AI第三波」世界將不再需要人類。天下雜誌,663。取自https://www.cw.com.tw/article/article.action?id=5093354
資策會產業情報研究所(2019年8月5日)。【智慧音箱消費者調查】「育學族」是臺灣智慧音箱黃金客群 本土品牌利基-多元資費、應用情境。取自https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=523
資誠聯合會計師事務所(2018年3月13日)。2018全球消費者洞察報告。取自https://www.pwc.tw/zh/news/press-release/press-20180313.html
廖玉玲(2019年4月13日)。IT業新壟斷各國傷腦筋。經濟日報。取自https://money.udn.com/money/story/10868/3752777
潘柏翰(2018年1月8日)。網路給人「全能的幻覺」,匿名性更加點燃酸民攻擊衝動。The News Lens關鍵評論網。取自https://www.thenewslens.com/article/86718
蕭文龍(2013) 。統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS)。碁峯資訊.
藍立晴(2018年7月6日)。智慧音響即將在亞洲起飛?日、韓、中發展趨勢分析。匯流新聞網。取自https://cnews.com.tw/002180705a04/
蘇若嫻(2018年4月1日)。以小搏大低成本創造好口碑。動腦雜誌,507。取自https://www.brain.com.tw/news/articlecontent?ID=46657

英文文獻
Anderson, A. A., Brossard, D., Scheufele, D. A., Xenos, M. A., &Ladwig, P. (2014). The “nasty effect:” Online incivility and risk perceptions of emerging technologies. Journal of Computer-Mediated Communication, 19(3), 373-387.
ARM. (2017, July 3). Global Artificial Intelligence Survey.Retrieved from https://www.arm.com/solutions/artificial-intelligence/survey
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Beckers, J. J., & Schmidt, H. G. (2001). The structure of computer anxiety: A six-factor model. Computers in Human Behavior, 17(1), 35-49.
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828.
Boerman, S. C., Willemsen, L. M., & Van Der Aa, E. P. (2017). “This post is sponsored”: Effects of sponsorship disclosure on persuasion knowledge and electronic word of mouth in the context of Facebook. Journal of Interactive Marketing, 38, 82-92.
Boysen, G. A., & Vogel, D. L. (2007). Biased assimilation and attitude polarization in response to learning about biological explanations of homosexuality. Sex Roles, 57(9-10), 755-762.
Bozionelos, N. (2001). Computer anxiety: relationship with computer experience and prevalence. Computers in Human Behavior, 17(2), 213-224.
Brooks, D. J., & Geer, J. G. (2007). Beyond negativity: The effects of incivility on the electorate. American Journal of Political Science, 51(1), 1-16.
Cheng, X., & Zhou, M. (2010, August). Empirical study on credibility of electronic word of mouth. In 2010 International Conference on Management and Service Science, pp. 1–4.
Cheung, C. M., Xiao, B. S., & Liu, I. L. (2014). Do actions speak louder than voices? The signaling role of social information cues in influencing consumer purchase decisions. Decision Support Systems, 65, 50-58.
Chevalier, J. A., &Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354.
Coe, K., Kenski, K., & Rains, S. A. (2014). Online and uncivil? Patterns and determinants of incivility in newspaper website comments. Journal of Communication, 64(4), 658-679.
Craciun, G., & Moore, K. (2019). Credibility of Negative Online Product Reviews: Reviewer Gender, Reputation and Emotion Effects. Computers in Human Behavior, 97, 104-115.
Davvetas, V., & Diamantopoulos, A. (2016). How product category shapes preferences toward global and local brands: a schema theory perspective. Journal of International Marketing, 24(4), 61-81.
Deep Learning Gallery. Retrieved from http://deeplearninggallery.com/
Ding, C., Cheng, H. K., Duan, Y., &Jin, Y. (2017). The power of the “like” button: The impact of social media on box office. Decision Support Systems, 94, 77-84.
Drago, E. (2015). "The Effect of Technology on Face-to-Face Communication." Elon Journal of Undergraduate Research in Communications, 6(1), 13-19.
Dursun, İ., &TümerKabadayi, E. (2013). Resistance to persuasion in an anti‐consumption context: Biased assimilation of positive product information. Journal of Consumer Behaviour, 12(2), 93-101.
Dvorsky, G. (2013). The 12 cognitive biases that prevent you from being rational. Retrieved fromhttp://io9. com/5974468/the-most-common-cognitivebiases-that-prevent-you-from-being-rational.
Fast, E., & Horvitz, E. (2017, February). Long-term trends in the public perception of artificial intelligence. In Thirty-First AAAI Conference on Artificial Intelligence.
Flanagin, A. J., & Metzger, M. J. (2007). The role of site features, user attributes, and information verification behaviors on the perceived credibility of web-based information. New Media &Society, 9(2), 319-342.
Flanagin, A. J., Metzger, M. J., Pure, R., Markov, A., & Hartsell, E. (2014). Mitigating risk in ecommerce transactions: perceptions of information credibility and the role of user-generated ratings in product quality and purchase intention. Electronic Commerce Research, 14(1), 1-23.
Fornell, C., &Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Gervais, B. T. (2015). Incivility online: Affective and behavioral reactions to uncivil political posts in a web-based experiment. Journal of Information Technology & Politics, 12(2), 167-185.
Goodman-Deane, J., Mieczakowski, A., Johnson, D., Goldhaber, T., & Clarkson, P. J. (2016). The impact of communication technologies on life and relationship satisfaction. Computers in Human Behavior, 57, 219-229.
Grabner-Kräuter, S., &Faullant, R. (2008). Consumer acceptance of internet banking: the influence of internet trust. International Journal of Bank Marketing, 26(7), 483-504.
Griffin, R. J., Neuwirth, K., Giese, J., & Dunwoody, S. (2002). Linking the heuristic-systematic model and depth of processing. Communication Research, 29(6), 705-732.
Hair Jr, J. F., Hult, G. T. M., Ringle, C., &Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
Hair, M., &Ozcan, T. (2018). How reviewers’ use of profanity affects perceived usefulness of online reviews. Marketing Letters, 29(2), 151-163.
Harrison, M. P., Beatty, S. E., Reynolds, K. E., & Noble, S. M. (2012). Why customers feel locked into relationships: using qualitative research to uncover the lock-in factors. Journal of Marketing Theory and Practice, 20(4), 391-406.
Haselton, M. G., Nettle, D., & Murray, D. R. (2015). The evolution of cognitive bias. The Handbook of Evolutionary Psychology, 1-20.
Hennig-Thurau, T., Malthouse, E. C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., &Skiera, B. (2010). The impact of new media on customer relationships. Journal of Service Research, 13(3), 311-330.
Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of Consumer Research, 17(4), 454-462.
Hilligoss, B., &Rieh, S. Y. (2008). Developing a unifying framework of credibility assessment: Construct, heuristics, and interaction in context. Information Processing & Management, 44(4), 1467-1484.
Horwitz, E. (2001). Language anxiety and achievement. Annual Review of Applied Linguistics, 21, 112-126.
Hu, H., & Jasper, C. R. (2006). Social cues in the store environment and their impact on store image. International Journal of Retail & Distribution Management, 34(1), 25-48.
Hu, N., Pavlou, P. A., & Zhang, J. J. (2017). On Self-Selection Biases in Online Product Reviews. MIS Quarterly, 41(2), 449-471.
Hussain, S., Ahmed, W., Jafar, R. M. S., Rabnawaz, A., &Jianzhou, Y. (2017). eWOM source credibility, perceived risk and food product customer's information adoption. Computers in Human Behavior, 66, 96-102.
Hwang, H., Kim, Y., & Kim, Y. (2018). Influence of discussion incivility on deliberation: An examination of the mediating role of moral indignation. Communication Research, 45(2), 213-240.
Jenny Chang (2019).50+ Vital Artificial Intelligence Statistics: 2019 Data Analysis & Market Share.FinancesOnline .Retrieved from https://financesonline.com/artificial-intelligence-statistics/#market
Jerit, J., &Barabas, J. (2012). Partisan perceptual bias and the information environment. The Journal of Politics, 74(3), 672-684.
Jiménez, F. R., & Mendoza, N. A. (2013). Too popular to ignore: The influence of online reviews on purchase intentions of search and experience products. Journal of Interactive Marketing, 27(3), 226-235.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
Keil, M., Depledge, G., & Rai, A. (2007). Escalation: The role of problem recognition and cognitive bias. Decision Sciences, 38(3), 391-421.
Kenski, K., Coe, K., & Rains, S. A. (2017). Perceptions of Uncivil Discourse Online: An Examination of Types and Predictors. Communication Research.
Kerssies, J. J. (2013, March 28). Flaming and Word of Mouth. University of Twente.
Kiliç, D. B. Ç. (2015). Music teachers computer anxiety and self-efficacy. Educational Research and Reviews, 10(11), 1547-1559.
Kim, Y., & Hwang, H. (2018). When partisans see media coverage as hostile: The effect of uncivil online comments on hostile media effect. Media Psychology, 1-22.
Ku, Y. C., Wei, C. P., & Hsiao, H. W. (2012). To whom should I listen? Finding reputable reviewers in opinion-sharing communities. Decision Support Systems, 53(3), 534-542.
Kumkale, G. T., Albarracin, D., &Seignourel, P. J. (2010). The effects of source credibility in the presence or absence of prior attitudes: Implications for the design of persuasive communication campaigns. Journal of Applied Social Psychology, 40(6), 1325-1356.
Kummer, T. F., Recker, J., & Bick, M. (2017). Technology-induced anxiety: Manifestations, cultural influences, and its effect on the adoption of sensor-based technology in German and Australian hospitals. Information and Management, 54(1), 73-89.
Lim, K. H., Sia, C. L., Lee, M. K., &Benbasat, I. (2006). Do I trust you online, and if so, will I buy? An empirical study of two trust-building strategies. Journal of Management Information Systems, 23(2), 233-266.
Lison, P. (2015). An introduction to machine learning. Language Technology Group (LTG), 1, 35.
Liu, F., Shi, Y., & Liu, Y. (2017). Intelligence quotient and intelligence grade of artificial intelligence. Annals of Data Science, 4(2), 179-191.
Loup Ventures. (2018, February 21).Smart Speaker Satisfaction High, but It’s Early Days.Retrieved from https://loupventures.com/smart-speaker-satisfaction-high-but-its-early-days/
Lu, L. C., Chang, W. P., & Chang, H. H. (2014). Consumer attitudes toward blogger’s sponsored recommendations and purchase intention: The effect of sponsorship type, product type, and brand awareness. Computers in Human Behavior, 34, 258-266.
Machine Design. (2017, February 16). What’s the Difference Between Weak and Strong AI.Retrieved from https://www.machinedesign.com/robotics/what-s-difference-between-weak-and-strong-ai
Mafael, A., Gottschalk, S.A. & Kreis H., (2016), “Examining Biased Assimilation of Brandrelated Online Reviews”, Journal of Interactive Marketing, Vol. 36 November , pp. 91–106.
Malhotra, Y., &Galletta, D. F. (1999, January). Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. In Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers (pp. 14-pp).
Mariani, R., & Mohammed, D. (2014). " Like" A Global Endorsement. How Clicking" Like" Influences Facebook Users Brand Recall and Future Purchasing Intentions. Journal of Management Policy & Practice, 15(4), 51-63.
Maricutoiu, L. P. (2014). A meta-analysis on the antecedents and consequences of computer anxiety. Procedia-Social and Behavioral Sciences, 127(2014), 311-315.
Messing, S., & Westwood, S. J. (2014). Selective exposure in the age of social media: Endorsements trump partisan source affiliation when selecting news online. Communication Research, 41(8), 1042-1063.
Moor, P. J., Heuvelman, A., &Verleur, R. (2010). Flaming on youtube. Computers in Human Behavior, 26(6), 1536-1546.
Muddiman, A., & Stroud, N. J. (2017). News values, cognitive biases, and partisan incivility in comment sections. Journal of Communication, 67(4), 586-609.
Mutz, D. C. (2007). Effects of “in-your-face” television discourse on perceptions of a legitimate opposition. American Political Science Review, 101(4), 621-635.
Mutz, D. C., & Reeves, B. (2005). The new videomalaise: Effects of televised incivility on political trust. American Political Science Review, 99(1), 1-15.
Neuwirth, K., Frederick, E., & Mayo, C. (2002). Person-effects and heuristic-systematic processing. Communication Research, 29(3), 320-359.
Newberry, C. R., Klemz, B. R., & Boshoff, C. (2003). Managerial implications of predicting purchase behavior from purchase intentions: a retail patronage case study. Journal of Services Marketing, 17(6), 609-620.
Oh, C., Lee, T., Kim, Y., Park, S., & Suh, B. (2017, May). Us vs. Them: Understanding Artificial Intelligence Technophobia over the Google DeepMind Challenge Match. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, 2017), 2523–2534.
Pavlou, P. (2001). Integrating trust in electronic commerce with the technology acceptance model: model development and validation. Amcis 2001 proceedings, 159.
Perc, M., Ozer, M., & Hojnik, J. (2019). Social and juristic challenges of artificial intelligence. Palgrave Communications, 5(1), 10.
Phua, J., &Ahn, S. J. (2016). Explicating the ‘like’on Facebook brand pages: The effect of intensity of Facebook use, number of overall ‘likes’, and number of friends'‘likes’ on consumers' brand outcomes. Journal of Marketing Communications, 22(5), 544-559.
Pierro, A., Mannetti, L., Kruglanski, A. W., Klein, K., &Orehek, E. (2012). Persistence of attitude change and attitude–behavior correspondence based on extensive processing of source information. European Journal of Social Psychology, 42(1), 103-111.
Polley, P. J. (2018). Social Perceptions of Artificial Intelligence.
Rana, N. P., & Dwivedi, Y. K. (2015). Citizen's adoption of an e-government system: Validating extended social cognitive theory (SCT). Government Information Quarterly, 32(2), 172-181.
Rieh, S. Y., & Danielson, D. R. (2007). Credibility: A multidisciplinary framework. Annual Review of Information Science and Technology, 41(1), 307-364.
Rijsdijk, S. A., Hultink, E. J., & Diamantopoulos, A. (2007). Product intelligence: its conceptualization, measurement and impact on consumer satisfaction. Journal of the Academy of Marketing Science, 35(3), 340-356.
Rowe, I. (2015). Civility 2.0: A comparative analysis of incivility in online political discussion. Information, Communication &Society, 18(2), 121-138.
Schellekens, M. (2015). Self-driving cars and the chilling effect of liability law. Computer Law & Security Review, 31(4), 506-517.
Scherer, C. R., &Sagarin, B. J. (2006). Indecent influence: The positive effects of obscenity on persuasion. Social Influence, 1(2), 138-146.
Schlag, M., &Imhof, M. (2017). Does Perceived Ease of Use Mitigate Computer Anxiety and Stimulate Self-Regulated Learning for Pre-Service Teacher Students?.International Journal of Higher Education, 6(3), 154-168.
Schwarz, G. M. (2012). The logic of deliberate structural inertia. Journal of Management, 38(2), 547-572.
Schweiger, W. (2000). Media credibility—experience or image? A survey on the credibility of the World Wide Web in Germany in comparison to other media. European Journal of Communication, 15(1), 37-59.
Shi, R., Messaris, P., & Cappella, J. N. (2014). Effects of online comments on smokers' perception of antismoking public service announcements. Journal of Computer-Mediated Communication, 19(4), 975-990.
Shi, X., Lin, Z., Liu, J., & Hui, Y. K. (2018). Consumer loyalty toward smartphone brands: The determining roles of deliberate inertia and cognitive lock-in. Information & Management, 55(7), 866-876.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Chen, Y. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354.
Sobieraj, S., & Berry, J. M. (2011). From incivility to outrage: Political discourse in blogs, talk radio, and cable news. Political Communication, 28(1), 19-41.
Stack, M., Gartland, M., & Keane, T. (2016). Path dependency, behavioral lock-in and the international market for beer. In Brewing, Beer and Pubs. Palgrave Macmillan UK, London, pp. 54–73.
Stroud, N. J., Scacco, J. M., Muddiman, A., & Curry, A. L. (2014). Changing deliberative norms on news organizations' Facebook sites. Journal of Computer-Mediated Communication, 20(2), 188-203.
Su, L. Y. F., Xenos, M. A., Rose, K. M., Wirz, C., Scheufele, D. A., & Brossard, D. (2018). Uncivil and personal? Comparing patterns of incivility in comments on the Facebook pages of news outlets. New Media & Society, 20(10), 3678-3699.
Suri, R., Lee, J. A., Manchanda, R. V., & Monroe, K. B. (2003). The effect of computer anxiety on price value trade‐off in the on‐line environment. Psychology & Marketing, 20(6), 515-536.
The University of Texas at Austin. (2016, March 14).News Commenters and News Comment Readers.Retrieved from https://mediaengagement.org/wp-content/uploads/2016/03/ENP-News-Commenters-and-Comment-Readers1.pdf
Thorson, K., Vraga, E., &Ekdale, B. (2010). Credibility in context: How uncivil online commentary affects news credibility. Mass Communication and Society, 13(3), 289-313.
Tractica.(2018, August 20).Artificial Intelligence Software Market to Reach $105.8 Billion in Annual Worldwide Revenue by 2025. Retrieved from https://www.tractica.com/newsroom/press-releases/artificial-intelligence-software-market-to-reach-105-8-billion-in-annual-worldwide-revenue-by-2025/
van Strien, J. L., Kammerer, Y., Brand-Gruwel, S., &Boshuizen, H. P. (2016). How attitude strength biases information processing and evaluation on the web. Computers in Human Behavior, 100(60), 245-252.
Vijay, T. S., Prashar, S., Parsad, C., & Kumar, M. (2017). An Empirical Examination of the Influence of Information and Source Characteristics on Consumers’ Adoption of Online Reviews. Pacific Asia Journal of the Association for Information Systems, 9(1).
Voicebot. (2019, March 7). U.S. Smart Speaker Ownership Rises 40% in 2018 to 66.4 Million and Amazon Echo Maintains Market Share Lead Says New Report from Voicebot. Retrieved from https://voicebot.ai/2019/03/07/u-s-smart-speaker-ownership-rises-40-in-2018-to-66-4-million-and-amazon-echo-maintains-market-share-lead-says-new-report-from-voicebot/
Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of Internet banking: an empirical study. International Journal of Service Industry Management, 14(5), 501-519.
Widmayer, S.A. (2004). Schema Theory: An Introduction. Educational Psychology, Retrieved from http://www.saber2.net/Archivos/Schema-Theory-Intro.pdf.
Winter, S., Metzger, M. J., &Flanagin, A. J. (2016). Selective use of news cues: A multiple-motive perspective on information selection in social media environments. Journal of Communication, 66(4), 669-693.
Wright, K. B. (2005). Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication, 10(3), JCMC1034.
Xie, H. J., Miao, L., Kuo, P. J., & Lee, B. Y. (2011). Consumers’ responses to ambivalent online hotel reviews: The role of perceived source credibility and pre-decisional disposition. International Journal of Hospitality Management, 30(1), 178-183.
Xie, X. (2005). The influence of schema theory on foreign language reading comprehension. The English Teacher, Vol 34, pp. 65-75.
Yang, J. (2016). Effects of popularity-based news recommendations (“most-viewed”) on users' exposure to online news. Media Psychology, 19(2), 243-271.
Ziegele, M., &Jost, P. B. (2016). Not funny? The effects of factual versus sarcastic journalistic responses to uncivil user comments. Communication Research, 1, 30.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code