論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
比較遠期強度模型與KMV模型 - 台灣公司實證研究 A comparison between Forward Intensity Model and KMV Model for Taiwanese Companies |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
65 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-06-30 |
繳交日期 Date of Submission |
2020-08-07 |
關鍵字 Keywords |
信用風險、擴大視窗法、遠期強度模型、KMV模型、AUC值 Credit risk, AUC, Expanding window approach, KMV model, Forward intensity model |
||
統計 Statistics |
本論文已被瀏覽 5744 次,被下載 0 次 The thesis/dissertation has been browsed 5744 times, has been downloaded 0 times. |
中文摘要 |
本文應用Duan et al. (2012)發展之遠期強度模型(Forward intensity model),針對台灣上市櫃公司1992年至2020年的財務會計變數及違約月資料預測公司遠期違約機率,該模型優勢為使用最新且可取得的資料預測公司遠期違約機率,因此在計算上較容易,且結果更為穩健。衡量模型預測準確度的方法為AUC值與Z檢定的分析,將遠期強度模型預測結果與KMV模型比較預測績效,發現在一年、兩年、三年之樣本外區間,兩模型於本文選取之大部分產業的預測違約表現並無顯著差異。 |
Abstract |
This study applied the forward intensity model developed by Duan et al. (2012) to predict the default probability of listed companies in Taiwan, spanning the period 1992–2020 based on a monthly based financial accounting variables and default data. The advantage of this model is that it utilized the latest and accessible data to predict the company's long-term default probability. Therefore, it is easier to calculate and the result is more robust. The methods used in analyzing the models’ prediction accuracy are AUC and Z-test. We compared the prediction performance between the forward intensity model and KMV model, and we found in one-year, two-year and three-year out-of-sample intervals, there is no significant difference in prediction performance between these two models in most industry we selected in this study. |
目次 Table of Contents |
論文審定書 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 1. 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究架構 2 2. 文獻回顧 3 2.1 專家系統 3 2.1.1 類神經網路分析法 3 2.2 內部評等法 4 2.3 信用評分模型 5 2.3.1 線性迴歸機率模型 5 2.3.2 Logit model and Probit model 6 2.3.3 多變量區別分析 6 2.4 公司財務危機定義 8 3. 資料來源與研究方法 10 3.1樣本選取及資料整備 10 3.1.1 遠期強度模型使用變數 11 3.1.2 KMV模型使用變數 12 3.2 研究方法 13 3.2.1遠期強度模型 13 3.2.2 KMV模型 15 3.3 預測績效評估指標 16 3.3.1 ROC曲線 16 3.3.2 Z檢定 18 4. 實證結果 19 4.1 遠期強度模型預測實證結果 19 4.1.1 樣本外各產業預測結果 20 4.2 模型預測結果比較 21 5. 結論與建議 22 5.1 結論 22 5.2建議 23 參考文獻 24 |
參考文獻 References |
參考文獻 中文部分 張大成, 林郁翎, & 蘇郁嵐. (2009). 無股價企業信用風險模式之建立: Merton 模型與 Ohlson 模型之結合. 中山管理評論, 17(4), 1045-1081. 黃瑞卿, 楊杰翰, & 朱至剛. (2012). 遠期強度模型-台灣上市櫃公司實證研究. 中國統計學報, 50(3), 126-141. 英文部分 Afik, Z., Arad, O., & Galil, K. (2016). Using Merton model for default prediction: An empirical assessment of selected alternatives. Journal of Empirical Finance, 35, 43-67. Allen, L., DeLong, G., & Saunders, A. (2004). Issues in the credit risk modeling of retail markets. Journal of Banking & Finance, 28(4), 727-752. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of finance, 23(4), 589-609. Bargeron, L. L., Schlingemann, F. P., Stulz, R. M., & Zutter, C. J. (2008). Why do private acquirers pay so little compared to public acquirers? Journal of Financial Economics, 89(3), 375-390. Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71-111. Beaver, W. H. (1968). The information content of annual earnings announcements. Journal of accounting research, 67-92. Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. J Inf Eng Appl, 3(10). Blochwitz, S., Liebig, T., & Nyberg, M. (2000). Benchmarking Deutsche Bundesbank's Default Risk Model, the KMV® Private Firm Model® and common financial ratios for German corporations. Paper presented at the Workshop on Applied Banking Research, BASEL COMMITTEE ON BANKING SUPERVISION, http://www. bis. org/bcbs/oslo/liebigblo. pdf (16.8. 2004). Collins, R. A., & Green, R. D. (1982). Statistical methods for bankruptcy forecasting. Journal of Economics and Business, 34(4), 349-354. Duan, J.-C., Kim, B., Kim, W., & Shin, D. (2018). Default probabilities of privately held firms. Journal of Banking & Finance, 94, 235-250. Duan, J.-C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction—A forward intensity approach. Journal of Econometrics, 170(1), 191-209. Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148(3), 839-843. Hung, H., & Chiang, C. T. (2010). Estimation methods for time‐dependent AUC models with survival data. Canadian Journal of Statistics, 38(1), 8-26. Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent data analysis, 6(5), 429-449. Jeni, L. A., Cohn, J. F., & De La Torre, F. (2013). Facing imbalanced data--recommendations for the use of performance metrics. Paper presented at the 2013 Humaine association conference on affective computing and intelligent interaction. Jensen, M. C., Black, F., & Scholes, M. S. (1972). The capital asset pricing model: Some empirical tests. Kaplan, R. S., & Urwitz, G. (1979). Statistical models of bond ratings: A methodological inquiry. Journal of business, 231-261. Laitinen, E. K. (1991). Financial ratios and different failure pROC esses. Journal of Business Finance & Accounting, 18(5), 649-673. Lau, A. H.-L. (1987). A five-state financial distress prediction model. Journal of accounting research, 127-138. Lin, S., Ansell, J., & Andreeva, G. (2012). Predicting default of a small business using different definitions of financial distress. Journal of the Operational Research Society, 63(4), 539-548. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of finance, 29(2), 449-470. Mester, L. J. (1997). What’s the point of credit scoring? Business review, 3(Sep/Oct), 3-16. Moody's, K. (2004). MOODY’S KMV RISKCALC™ V3. 1 JAPAN. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131. Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), e0118432. Zhang, D. D., Zhou, X. H., Freeman Jr, D. H., & Freeman, J. L. (2002). A non‐parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets. Statistics in medicine, 21(5), 701-715. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |