Responsive image
博碩士論文 etd-0613122-112027 詳細資訊
Title page for etd-0613122-112027
論文名稱
Title
在5G-SA-Open RAN環境下實作無人機自動巡航
Implementation of Automatic Cruise on UAV in 5G-SA-Open RAN
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-08
繳交日期
Date of Submission
2022-07-13
關鍵字
Keywords
MAVLink、CTT、ITM、GPS、UAV、自動巡航
MAVLink, CTT, ITM, GPS, UAV, Automatic Cruise
統計
Statistics
本論文已被瀏覽 311 次,被下載 0
The thesis/dissertation has been browsed 311 times, has been downloaded 0 times.
中文摘要
在無人機自動巡航技術的發展過程中,5G行動通訊網路的低延遲與高可靠性已經改善無人機飛行的安全性與反應時間,本論文提出無人機自動巡航的機制(Automatic Cruise Mechanism on UAV, ACMU),此機制的運作流程分為監控中心與樹梅派的運作流程,我們在監控中心設計ACMU Server,ACMU Server將YOLO的近似GPS值轉換為控制封包,我們在樹梅派設計兩個模組,分別為控制封包接收模組與飛行控制模組,在監控中心與無人機之間設計控制封包,控制封包包含飛行任務所需的經度、緯度、高度。在實作過程中,監控中心會透過TCP Socket將控制封包傳送給樹梅派,樹梅派的控制封包接收模組收到後透過行程間通訊(Inter-Proccess Communication)傳送給飛行控制模組並轉換為MAVLink指令讓無人機起飛。無人機起飛後,飛行控制模組負責無人機的飛行安全與追蹤入侵物,在追蹤入侵物的部分,飛行控制模組將會比較無人機上的GPS接收器所定位的當前位置與ACMU Server傳送的目標位置,當兩個位置相差小於容許值時,無人機將視為抵達入侵物位置,並在入侵物上空盤旋,當其他攝影機偵測到新的入侵物時,無人機將執行改變位置的指令飛向新的入侵物,在抵達入侵物位置後,樹梅派的控制封包接收模組會傳送無人機抵達位置的訊息給ACMU Server,在實作完成後,我們在ACMU Server量測無人機的起飛時間(Capture to Take-Off, CTT)與移動位置(Instruction to Move, ITM)所需的延遲時間。
Abstract
In the development of automatic cruise techniques, 5G-NR (New Radio) offer the benefit of ultra reliability and low latency, which can significantly improve the safety and response time in a drone flight. In this thesis, we propose an automatic cruise mechanism which consists of two parts, the controller and the Raspberry Pi. In the controller, we design an Automatic Cruise Mechanism on UAV (ACMU). The function of ACMU is to convert the approximate GPS value into control packets. In the Raspberry Pi, we design two modules, the control-packet receiving module and the flight control module. For the communication between the controller and the Raspberry Pi, we design a control packet, contained longitude, latitude, and altitude for the flight mission. In the implementations of ACMU, the controller first sends a control packet to Raspberry Pi through TCP Socket. After receiving the control packet, the control-packet receiving module converts it into MAVLink instruction and sends it to flight control module via inter-process communication (IPC). In the decision of intruder tracking function, the flight control module will compare the drone's present location and the target location. When another camera detects a new intruder, drone will fly to the new intruder. After arriving the location of the new intruder, the control-packet receiving module sends back the report message to ACMU Server. After the implementations, we measure two delay times, the capture-to-takeoff (CTT) delay and the instruction-to-move (ITM) delay.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 導論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 章節介紹 2
第二章 無人機的控制與協定 3
2.1無人機GPS的定位 3
2.2 MAVLink 6
2.2.1 MAVLink Frame 6
2.2.2 Command-Long 7
2.3 Inter-Process Communication 9
2.3.1 Pipe 10
2.3.2 Message Queue 10
2.3.3 Share Memory 11
2.3.4 Memory Mapping 13
2.4 相關研究 13
第三章 無人機的自動巡航 18
3.1 系統架構 18
3.2 ACMU Server傳送控制封包的流程 21
3.3 無人機的樹梅派接收控制封包的流程 22
3.3.1 控制封包接收模組 22
3.3.2 飛行控制模組 23
3.4 控制封包 25
3.5 監控中心與無人機的延遲時間 27
第四章 實作與結果分析 30
4.1 ACMU傳送控制封包的虛擬碼 30
4.2 樹梅派接收控制封包的實作 42
4.2.1 控制封包接收模組的虛擬碼 42
4.2.2 飛行控制模組的虛擬碼 48
4.3 實驗環境與設備規格 52
4.4 CTT與ITM的量測步驟 56
4.5實作的結果與分析 57
4.5.1實驗內容與參數設定 57
4.5.2結果分析 58
第五章 結論與未來工作 60
5.1 結論 60
5.2 遭遇的困難 60
5.3 未來工作 61
References 62
Acronyms 67
Index 68
參考文獻 References
[1] P. H. Dana, “Global Positioning System Overview,” University of Texas at Austin, Sep. 1994.
[2] G. Fu, C. Riedel, T. Holmes, and J. Liu, “Geometric Modeling of the Z-Surface and Z-Curve of GNSS Signals and Their Solution Techniques,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, Issue 1, pp. 212-223, Jan. 2019.
[3] A. Mulla, J. Baviskar, A. Baviskar, and A. Bhovad, “GPS Assisted Standard Positioning Service for Navigation and Tracking: Review & Implementation,” IEEE International Conference on Pervasive Computing (ICPC), Pune, India, Feb. 2015.
[4] “IS-GPS-800,” National Coordination Office for Space-Based Positioning, Navigation, and Timing, May 2020.
[5] M. Shoab, K. Jain, M. Anulhaq, and M. Shashi, “Development and Implementation of NMEA Interpreter for Real Time GPS Data Logging,” IEEE International Advance Computing Conference (IACC), Ghaziabad, India, Feb. 2013.
[6] D. Stojcsics and L. Somlyai, “Improvement Methods of Short Range and Low Bandwidth Communication for Small Range UAVs,” IEEE 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, Sep. 2010.
[7] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui, “Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey,” IEEE Access, Vol. 7, pp. 87658-87680, Jun. 2019.
[8] Y. Kwon, J. Yu, B. Cho, Y. Eun, and K. Park, “Empirical Analysis of MAVLink Protocol Vulnerability for Attacking Unmanned Aerial Vehicles,” IEEE Access, Vol. 6, pp. 43203-43212, Aug. 2018.
[9] M. Kerrisk, “The Linux Programming Interface,” No Starch Press, Oct. 2010.
[10] T. Parenty, “The Incorporation of Multi-Level IPC into Unix,” Proceedings. 1989 IEEE Symposium on Security and Privacy, May 1989.
[11] “14519-2001 IEEE Std 1003.5-1999,” IEEE Standard for Information Technology, 1999.
[12] R. Benosman, K. Barkaoui, and Y. Albrieux, “A New Dynamic IPC-Memory Allocator Based on a Paging Approach,” IEEE International Conference on High Performance Computing & Simulation (HPCS), Helsinki, Finland, Jul. 2013.
[13] D. Limaye, R. Rakvic, and J. Shen, “Parallel cachelets,” Proceedings 2001 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD), Sep. 2001.
[14] P. Singh and R. Silva, “Design and Implementation of an Experimental UAV Network,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 11, Issue 11, pp. 536-546, Nov. 2019.
[15] R. Silva, S. Rajasinghege, B. Han, and H. D. Schotten, “Optimal Desired Trajectories of UAVs in Private UAV Networks,” IEEE International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, Oct. 2018.
[16] S. Park, C. Shin, D. Jeong, and H. Lee, “DroneNetX: Network Reconstruction Through Connectivity Probing and Relay Deployment by Multiple UAVs in Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, Vol. 67, Issue 11, pp. 11192-11207, Nov. 2018.
[17] M. Gapeyenko, V. Petrov, D. Moltchanov, S. Andreev, N. Himayat, and Y. Koucheryavy, “Flexible and Reliable UAV-Assisted Backhaul Operation in 5G mmWave Cellular Networks,” IEEE Journal on Selected Areas in Communications, Vol. 36, Issue 11, pp. 2486-2496, Nov. 2018.
[18] M. K. Shehzad, A. Ahmad, S. Hassan, and H. Jung, “Backhaul-Aware Intelligent Positioning of UAVs and Association of Terrestrial Base Stations for Fronthaul Connectivity,” IEEE Transactions on Network Science and Engineering, Vol. 8, Issue 4, pp. 2742-2755, Oct. 2021.
[19] N. Lim, Y. Lee, M. Tham, Y. Chang, A. Sim, and D. Qin, “Coverage Optimization for UAV Base Stations using Simulated Annealing,” IEEE 15th Malaysia International Conference on Communication (MICC), Malaysia, Dec. 2021.
[20] H. M. Senov and Y. V. Bolgov, “Development of a Combined Mechatronic System Based on a Mobile Platform and a Drone for Monitoring of Natural Hazards in Mountainous Areas,” IEEE International Conference Quality Management, Transport and Information Security, Information Technologies, Sochi, Russia, Sep. 2019.
[21] S. Nair, G. Rodrigues, C. Dsouza, S. Bellary, and V. Gonsalves, “Designing of Beach Rescue Drone Using GPS and Zigbee Technologies,” IEEE International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, Jul. 2019.
[22] K. Chen, M. Xie, Y. Chen, T. Chu, and Y. Lin, “DroneTalk: An Internet-of-Things-Based Drone System for Last-Mile Drone Delivery,” IEEE Transactions on Intelligent Transportation Systems ( Early Access ), Feb. 2022.
[23] A. S. Nair, P. A. Jeyanthy, L. Ramesh, G. M. Kurian, and S. R. Mohamed, “Autonomous Precision Landing with UAV and Auto charging,” IEEE International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, Aug. 2021.
[24] S. Sato and T. Anezaki, “Autonomous Flight Drone for Infrastructure (Transmission Line) Inspection (2),” IEEE International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, Nov. 2017.
[25] S. Huang, R. Teo, W. Liu, and S. Dymkou, “Distributed Cooperative UAV Loss Detection and Auto-Replacement Protocol with Guaranteed Properties,” IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA , Jun. 2017.
[26] C. Lee and B. Liao, “Collision Avoidance Control for Connected Drones in Air-Intersections: Extended Abstract,” IEEE 30th Wireless and Optical Communications Conference (WOCC), Taipei, Taiwan, Oct. 2021.
[27] M. Hamanaka and F. Nakano, “Surface-Condition Detection System of Drone-Landing Space using Ultrasonic Waves and Deep Learning,” IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, Sep. 2020.
[28] S. Tansuriyong, M. Kyan, K. Numata, S. Taira, and T. Anezaki, “Verification Experiment for Drone Charging Station Using RTK-GPS,” IEEE International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, Nov. 2017.
[29] D. Park, H. Lee, and J. Lee, “A Design on the Image-based Indoor Automatic Flight Control of Quadcopter,” IEEE 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, Oct. 2019.
[30] G. Z. Papaliakos, M. Logothetis, and K. J. Kyriakopoulos, “A Fault Diagnosis Framework for MAVLink-Enabled UAVs Using Structural Analysis,” IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, May 2019.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-07-13
校外 Off-campus:開放下載的時間 available 2027-07-13

您的 IP(校外) 位址是 3.144.222.149
現在時間是 2024-05-12
論文校外開放下載的時間是 2027-07-13

Your IP address is 3.144.222.149
The current date is 2024-05-12
This thesis will be available to you on 2027-07-13.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2027-07-13

QR Code