Responsive image
博碩士論文 etd-0611118-175246 詳細資訊
Title page for etd-0611118-175246
論文名稱
Title
以數值模式探討上次冰盛期之古黑潮長期變化
Simulation of Kuroshio during Last Glacial Maximum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-01
繳交日期
Date of Submission
2018-07-18
關鍵字
Keywords
PMIP、海平面下降、琉球海流、上次冰盛期、流徑、黑潮、古海洋
PMIP, paleoceanography, Last Glacial Maximum, path, Ryukyu Current, sea level, Kuroshio
統計
Statistics
本論文已被瀏覽 5786 次,被下載 20
The thesis/dissertation has been browsed 5786 times, has been downloaded 20 times.
中文摘要
黑潮為北太平洋之西方邊界流,能將大量熱能從赤道送往高緯度地區,進而影響北太平洋的海洋環境及氣候系統。然而其流量的長期變化及流徑的變遷歷史仍未完全被了解,透過沉積物紀錄與模式研究的相互驗證,可以重建過去黑潮,並了解古今黑潮的差異。現今黑潮與上次冰盛期(Last Glacial Maximum, LGM)之古黑潮的差異,主要受控於地形水深、風場條件與太陽輻射力等條件。本研究利用Princeton Ocean Model(POM)海洋環流模式,代入現今之水深及大氣條件,重建現今海洋環流型態。接著,改變地形水深條件(將海平面下降135公尺,以符合LGM的情境)與風場條件(將Paleoclimate Modelling Intercomparison Project產出之LGM時期風場資料代入模式),來模擬LGM時期西北太平洋的海洋環流型態,並從中討論現今黑潮與LGM古黑潮之間的差異及變化。另透過數組數值實驗,交互比較各控制條件對古黑潮的影響,釐清造成古今黑潮差異之主要因素。比較模擬結果與岩心重建古海洋紀錄後,本研究認為黑潮於LGM時期僅部分通過東臺灣通道,大部分移出沖繩海槽東側,以現今琉球海流的流徑為當時的主要流徑。然而,LGM時期因強勁東北季風影響,部分黑潮海水會通過琉球列島間的海峽流入北沖繩海槽,此一模擬結果與北沖繩海槽岩心重建之古溫鹽紀錄相符。本研究亦討論大尺度(或海盆尺度)及區域性風場變化對於黑潮流速流量的影響,在大尺度太平洋熱帶東北信風及副熱帶西風增強時,黑潮流速流量會增加,而因海陸差異加劇而造成之區域性東北季風變強時則反之。本研究更指出新古黑潮主流流徑:全球海平面下降所導致的地形改變使黑潮主流不通過東臺灣通道,提前東轉以琉球列島東側為主流位置,並因強勁東北季風吹拂,使部分流量經琉球列島間海峽流入北沖繩海槽。而當LGM時,強勁風場及因應而增強的風應力旋度下,黑潮仍可以與現今琉球海流相似之流徑往北輸送熱量與水氣,於氣候系統中扮演與今日黑潮相似的角色。
Abstract
The Kuroshio transports heat and energy from tropical region to higher latitude area. The history of Kuroshio variation can be reconstructed by sediment core record and numerical model simulation. The Kuroshio during Last Glacial Maximum (LGM) has been suggested to be mainly controlled by bathymetry, wind field and solar radiations. Firstly, the present Kuroshio is reconstructed by the Kuroshio Current Model, which is built up based on the Princeton Ocean Model (POM), with the present bottom topography and atmospheric forcing. Further, the LGM Kuroshio is simulated by forcing the Kuroshio Current Model with the LGM bathymetry (subtracting 135 meters from the present water depth) and wind field (setting as outputs from Paleoclimate Modelling Intercomparison Project, PMIP). By comparing the present and LGM Kuroshio simulations, the main factors leading to the variability of Kuroshio in the LGM are clarified. Supported by the proxy preserved in palaeoceanographic records and our numerical simulations, we found that the Kuroshio main stream during LGM did not enter the Okinawa Trough through the East Taiwan Channel. Instead, it flowed along the eastern side of Ryukyu Islands, where the present Ryukyu Current passes. Our simulations also show that the stronger winter monsoon during LGM transported a considerable amount of surface Kuroshio water into the northern Okinawa Trough through channels among Ryukyu Islands, in agreement with the LGM temperature and salinity recorded in the cores in northern Okinawa Trough. Besides, the impact of large-scale (or basin-scale) and regional winds on the variability of paleo-Kuroshio is also discussed. Thus, we suggested a new pathway of paleo-Kuroshio during Last Glacial Maximum: turning eastward before passing through East Taiwan Channel. In the way going norward, part of transport flowing into northern Okinawa Trough from Ryukyu Trench side through channels between Ryukyu islands due to Ekman transport by strong northeasterly monsoon. Paleo-Kuroshio could play the same role and remained similar velocity structure as the present Kuroshio but flowing along the pathway of present Ryukyu Current during Last Glacial Maximum.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第1章 緒論 1
1.1 研究區域水文環境 1
1.2 前人研究 3
1.3 研究目的 6
第2章 研究工具與方法 10
2.1 模式介紹 10
2.2 資料介紹 11
2.2.1 ECMWF-ORAS-4 海洋再分析資料 11
2.2.2 風場資料 12
2.2.2.1 ERA-Interim 12
2.2.2.2 PMIP之上次冰盛期風場資料 13
2.2.3 海平面變化與地形資料 14
第3章 模式結果與驗證 18
3.1 現今黑潮模擬與觀測資料驗證 18
3.1.1 臺灣東部 18
3.1.2 東臺灣通道 19
3.1.3 東海 20
3.2 現今風場與上次冰盛期風場資料比較 21
第4章 實驗意義與討論 28
4.1 現今地形與古地形條件比較 29
4.1.1 現今風場下之現今地形與海平面下降模擬結果比較 29
4.1.2 上次冰盛期風場之地形控制條件比較 31
4.2 現今風場與古風場條件比較 33
4.2.1 相同地形不同風場控制條件之比較 33
4.2.2 古地形下,不同風場控制條件之比較 35
4.3 上次冰盛期之古黑潮 37
4.3.1 綜合討論黑潮於時間空間上之變化 37
4.3.2 以黑潮流域分段探討控制條件 39
4.3.3 與前人研究、古海洋紀錄之綜合比較討論 40
第5章 結論與建議 56
參考文獻 59
參考文獻 References
Amante, C. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. http://www. ngdc. noaa. gov/mgg/global/global. html.
Andreasen, D. J., & Ravelo, A. C. (1997). Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum. Paleoceanography, 12(3), 395-413.
Balmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132-1161.
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S., Uppala, S., & Simmons, A. (2011). The ERA-Interim archive Version 2.0, ERA Report Series 1, ECMWF, Shinfield Park. Reading, UK, 13177.
Blumberg, A. F., & Mellor, G. L. (1987). A description of a three‐dimensional coastal ocean circulation model. Three-dimensional coastal ocean models, 1-16
Chen, C. T. A., Ruo, R., Paid, S. C., Liu, C. T., & Wong, G. T. F. (1995). Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Continental Shelf Research, 15(1), 19-39.
Chen, M. T., Lin, X. P., Chang, Y. P., Chen, Y. C., Lo, L., Shen, C. C., Yokoyama, Y., Oppo, D. W., Thompson, W. G., & Zhang, R. (2010). Dynamic millennial‐scale climate changes in the northwestern Pacific over the past 40,000 years. Geophysical research letters, 37(23).
Chiang, T. L., Wu, C. R., & Oey, L. Y. (2011). Typhoon Kai-Tak: An ocean’s perfect storm. Journal of Physical Oceanography, 41(1), 221-233.
Clark, P. U., & Mix, A. C. (2002). Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews, 21(1-3), 1-7.
Diekmann, B., Hofmann, J., Henrich, R., Fütterer, D. K., Röhl, U., & Wei, K. Y. (2008). Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Marine Geology, 255(1), 83-95.
Gong, X., Knorr, G., Lohmann, G., & Zhang, X. (2013). Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states. Geophysical Research Letters, 40(14), 3698-3704.
Ichikawa, H., Nakamura, H., Nishina, A., & Higashi, M. (2004). Variability of northeastward current southeast of northern Ryukyu Islands. Journal of oceanography, 60(2), 351-363.
Ijiri, A., Wang, L., Oba, T., Kawahata, H., Huang, C. Y., & Huang, C. Y. (2005). Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(3-4), 239-261.
Jin, B., Wang, G., Liu, Y., & Zhang, R. (2010). Interaction between the East China Sea Kuroshio and the Ryukyu Current as revealed by the self‐organizing map. Journal of Geophysical Research: Oceans, 115(C12).
Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C. T., & Yang, Y. (2001). The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array. Journal of Physical Oceanography, 31(4), 1031-1053.
Kim, Y. Y., Qu, T., Jensen, T., Miyama, T., Mitsudera, H., Kang, H. W., & Ishida, A. (2004). Seasonal and interannual variations of the North Equatorial Current bifurcation in a high‐resolution OGCM. Journal of Geophysical Research: Oceans, 109(C3).
Lee, K. E., Lee, H. J., Park, J. H., Chang, Y. P., Ikehara, K., Itaki, T., & Kwon, H. K. (2013). Stability of the Kuroshio path with respect to glacial sea level lowering. Geophysical Research Letters, 40(2), 392-396.
Lee, S. Y., & Poulsen, C. J. (2005). Tropical Pacific climate response to obliquity forcing in the Pleistocene. Paleoceanography, 20(4).
Li, T., Liu, Z., Hall, M. A., Berne, S., Saito, Y., Cang, S., & Cheng, Z. (2001). Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1-4), 133-146.
Lin, Y. F., & Wu, C. R. (2013). Interannual variability of the Kuroshio intrusion onto the shelf of the East China Sea. Proceedings of the 35th Ocean Engineering Conference in Taiwan, National Sun Yat-sen University, Nov.
Liu, Z., Shin, S., Behling, P., Prell, W., Trend‐Staid, M., Harrison, S. P., & Kutzbach, J. E. (2000). Dynamical and observational constraints on tropical Pacific sea surface temperatures at the last glacial maximum. Geophysical research letters, 27(1), 105-108.
Liang, W. D., Tang, T. Y., Yang, Y. J., Ko, M. T., & Chuang, W. S. (2003). Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7), 1085-1105.
Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851-875.
Mellor, G. L., & Blumberg, A. F. (1985). Modeling vertical and horizontal diffusivities with the sigma coordinate system. Monthly Weather Review, 113(8), 1379-1383.
Mellor, G. L. (1998). Users guide for a three dimensional, primitive equation, numerical ocean model. Princeton, NJ 08544-0710: Program in Atmospheric and Oceanic Sciences, Princeton University.

Na, H., Wimbush, M., Park, J. H., Nakamura, H., & Nishina, A. (2014). Observations of flow variability through the Kerama Gap between the East China Sea and the Northwestern Pacific. Journal of Geophysical Research: Oceans, 119(2), 689-703.
Nagashima, K., Tada, R., Matsui, H., Irino, T., Tani, A., & Toyoda, S. (2007). Orbital-and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(1-2), 144-161.
Nitani, H. (1972). Beginning of the Kuroshio. Kuroshio, Physical Aspect of the Japan Current.
Peterschmitt, J.-Y., Denvil, S., & Morgan, M. (2013). The PMIP 3 Database: Latest News. EGU General Assembly Conference Abstracts, 15, EGU2013-9107
Phillips, N. A. (1957). A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 14(2), 184-185.
Qu, T., Mitsudera, H., & Qiu, B. (2001). A climatological view of the Kuroshio/Oyashio system east of Japan. Journal of physical oceanography, 31(9), 2575-2589.
Qu, T., & Lukas, R. (2003). The bifurcation of the North Equatorial Current in the Pacific. Journal of Physical Oceanography, 33(1), 5-18.
Quan, X. W., Diaz, H. F., & Hoerling, M. P. (2004). Change in the tropical Hadley cell since 1950. In The Hadley circulation: present, past and future (pp. 85-120). Springer, Dordrecht.
Shin, S. I., Liu, Z., Otto-Bliesner, B., Brady, E., Kutzbach, J., & Harrison, S. (2003). A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dynamics, 20(2-3), 127-151.
Stommel, H. (1948). The westward intensification of wind‐driven ocean currents. Eos, Transactions American Geophysical Union, 29(2), 202-206.
Sueyoshi, T., Ohgaito, R., Yamamoto, A., Chikamoto, M. O., Hajima, T., Okajima, H., Yoshimori, M., Abe, M., O'ishi, R., Saito, F., Watanabe, S., Kawamiya, M., & Abe-Ouchi, A. (2013). Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM. Geoscientific Model Development, 6(3), 819-836.
Thompson, W. G., & Goldstein, S. L. (2005). Open-system coral ages reveal persistent suborbital sea-level cycles. Science, 308(5720), 401-404.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U. , Bechtold, V. D., Fiorino, M. , Gibson, J. K., Haseler, J. , Hernandez, A. , Kelly, G. A., Li, X. , Onogi, K. , Saarinen, S. , Sokka, N. , Allan, R. P., Andersson, E. , Arpe, K. , Balmaseda, M. A., Beljaars, A. C., Berg, L. V., Bidlot, J. , Bormann, N. , Caires, S. , Chevallier, F. , Dethof, A. , Dragosavac, M. , Fisher, M. , Fuentes, M. , Hagemann, S. , Hólm, E. , Hoskins, B. J., Isaksen, L. , Janssen, P. A., Jenne, R. , Mcnally, A. P., Mahfouf, J. , Morcrette, J. , Rayner, N. A., Saunders, R. W., Simon, P. , Sterl, A. , Trenberth, K. E., Untch, A. , Vasiljevic, D., Viterbo, P., & Woollen, J. (2005). The ERA‐40 re‐analysis. Quarterly Journal of the royal meteorological society, 131(612), 2961-3012.
Yamashiro, T. (1990). Mean velocity distribution and transport of the Kuroshio referred to GEK surface velocity in the East China Sea. Umi to sora, 66(3), 29-38.
Zheng, X. F., Li, A. C., Kao, S. J., Gong, X., Frank, M., Kuhn, G., Cai, W. J., Yan, H., Wan, S. M., Zhang, H. H., Jiang, F. Q., Hathorne, E., Chen, Z., & Hu, B. Q. (2016). Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum. Earth and Planetary Science Letters, 452, 247-257.
Zhu, X. H., Han, I. S., Park, J. H., Ichikawa, H., Murakami, K., Kaneko, A., & Ostrovskii, A. (2003). The northeastward current southeast of Okinawa Island observed during November 2000 to August 2001. Geophysical research letters, 30(2).
Zhu, X. H., Park, J. H., & Kaneko, I. (2006). Velocity structures and transports of the Kuroshio and the Ryukyu Current during fall of 2000 estimated by an inverse technique. Journal of oceanography, 62(4), 587-596.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code