Responsive image
博碩士論文 etd-0019122-141200 詳細資訊
Title page for etd-0019122-141200
論文名稱
Title
在5G-SA-Open RAN的動態調整影音串流機制
A Dynamic Adjustment Mechanism for Video Streaming in 5G-SA-Open RAN
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-01-17
繳交日期
Date of Submission
2022-01-19
關鍵字
Keywords
5G行動通訊網路、影音串流、動態調整、轉碼、封包遺失率
5G mobile communication networks, Video streaming, Dynamic adjustment, Transcoding, Packet loss ratio
統計
Statistics
本論文已被瀏覽 421 次,被下載 0
The thesis/dissertation has been browsed 421 times, has been downloaded 0 times.
中文摘要
第三代合作夥伴(3rd Generation Partnership Project, 3GPP)在5G行動通訊網路中提出增強型行動寬頻通訊(Enhanced Mobile Broadband, eMBB)的應用。在eMBB的應用中,使用者設備(User Equipment, UE)透過5G行動通訊網路觀看影音串流時可能會移動到訊號品質不好的地方,訊號品質不好會造成傳送的位元出錯,使得影音串流的封包被丟棄,大量被丟棄的封包會造成UE的播放畫面出現馬賽克或停格,因為使用大的網路頻寬卻傳送大量被丟棄的封包,這樣會導致5G行動通訊網路頻寬的浪費,為了解決網路頻寬浪費的問題,本論文在5G行動通訊網路中提出並實作一個動態調整影音串流的機制,Streaming Server會先在緩衝器中將上傳的影音串流轉碼成高、中、低三種影音品質,接著UE會週期性的將Data Rates與區塊錯誤率(Block Error Rate, BLER)回報給Streaming Server,Streaming Server再根據UE回報的Data Rate與BLER來選擇一種最適當的影音串流品質。我們在中山大學5G校園實驗網路實作本論文機制,為了驗證本論文機制可以根據訊號品質來動態調整影音串流,我們讓使用者從訊號品質好的地方移動到訊號品質差的地方,從實驗結果中,我們證實本論文所提出的動態調整影音串流機制可以大量減少封包遺失率與有效節省網路頻寬。
Abstract
The 3rd Generation Partnership Project (3GPP) proposed Enhanced Mobile Broadband (eMBB) in the 5G mobile communication networks. In eMBB, when a user equipment (UE) is watching a video stream through 5G networks, he may move to a place where the signal quality is low. The poor signal quality causes serious bit errors during video transmission, which consequently produces packet losses. A large number of packet losses will cause frame in mosaics and/or frame freezes in the playback. Using large network bandwidth to deliver packets with large bit errors is just a bandwidth waste. In order to solve the bandwidth-waste problem, this thesis proposes and implements a dynamic adjustment scheme for video streaming in the 5G mobile communication networks. Streaming server will transcode an uploaded video stream into three different video qualities, high, medium, and low. UE then periodically reports the receiving data rates and block error rates (BLER) to the streaming server. The streaming server selects the appropriate quality of transcoded video stream based on the reported data rates and BLER by the UE. We design and implement the mechanism on the NSYSU-5G campus experimental networks. To verify the proposed mechanism, a UE in the experiment purposely moves from a place with relatively good signal quality to a place with poor. From the experimental results, we validate that the dynamic video adjustment scheme can greatly reduce the packet loss ratio and effectively save the network bandwidth.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 導論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 章節介紹 3
第二章 行動通訊網路的影音串流 4
2.1 5G行動通訊網路 4
2.1.1 NSA and SA 4
2.1.2 Open RAN 5
2.1.3 5GC 5
2.1.4 Block Error Rate 6
2.2影音串流 7
2.2.1 影音串流的轉碼 7
2.2.2 RTSP與RTP 10
2.2.3 影音串流的動態調整 10
2.2.4 影音串流的品質 12
2.3 相關研究 13
第三章 動態調整影音串流機制 15
3.1動態調整影音串流 15
3.2封包的排序與轉碼 18
3.3 DAVS系統模組 20
3.3.1 RDR量測模組 20
3.3.2 BLER量測模組 21
3.3.3 品質回報模組 22
3.3.4 SDR量測模組 23
3.4 DAVS演算法 25
第四章 實作與結果分析 29
4.1實驗環境與設備規格 29
4.2在UE上的實作 31
4.2.1 RDR量測模組的虛擬碼 31
4.2.2 BLER模組的虛擬碼 32
4.2.3 品質回報模組的虛擬碼 34
4.3在Streaming Server上的實作 35
4.3.1傳送緩衝區的新增 35
4.3.2 SDR量測模組的虛擬碼 36
4.3.2 DAVS演算法的虛擬碼 37
4.4實作的結果與分析 40
4.4.1實驗內容與參數設定 40
4.4.2結果分析 42
第五章 結論與未來工作 47
5.1 結論 47
5.2遭遇問題 48
Reference 49
Acronyms 53
Index 55
參考文獻 References
[1] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on new radio access technology: Radio access architecture and interfaces (Release 14),” 3GPP TR 38.801, Ver. 14.0.0, Apr. 2017.
[2] “5G; Study on New Radio (NR) access technology,” 3GPP TR 38.912, Ver. 15.0.0, Release 15, Sep. 2018.
[3] A. Marotta, D. Cassioli, K. Kondepu, C. Antonelli, and L. Valcarenghi, “Exploiting flexible functional split in converged software defined access networks,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 11, Issue 11, pp. 536-546, Nov. 2019.
[4] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A Comprehensive Survey of RAN Architectures Toward 5G Mobile Communication System,” IEEE Access, Vol. 7, pp. 70371-70421, May 28, 2019.
[5] “5G; NG-RAN; F1 Application Protocol (F1AP),” 3GPP TS 38.473, Ver. 15.8.0, Release 15, Jan. 2020.
[6] “5G; System architecture for the 5G System (5GS),” 3GPP TS 23.501, Ver. 16.6.0, Release 16, Oct. 2020.
[7] I. Ahmad, X. Wei, Y. Sun, and Y. Q. Zhang, “Video transcoding: an overview of various techniques and research issues,” IEEE Transactions on Multimedia, Vol. 7, Issue 5, pp. 793-804, Oct. 2005.
[8] G. Choi, P. G. Heo, and H. Park, “Triple-Frame-Based Bi-Directional Motion Estimation for Motion-Compensated Frame Interpolation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 29, Issue 5, pp. 1251-1258, May 2019.
[9] H. Yang, H. Chen, J. Chen, S. Esenlink, S. Sethuraman, X. Xiu, E. Alshina, and J. Luo, “Subblock-Based Motion Derivation and Inter Prediction Refinement in the Versatile Video Coding Standard,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 31, Issue 10, pp. 3862-3877, Oct. 2021
[10] M. S. Sri, B. R. Naik, and K. Jayasankar, “Object Tracking using Motion Estimation based on Block Matching Algorithm,” 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, Feb. 26-28, 2020.
[11] J. Xin, C. W. Lin, and M. T. Sun, “Digital Video Transcoding,” Proceedings of the IEEE, Vol. 93, Issue 1, pp. 84-97, Jan. 2005.
[12] N. Bjork and C. Christopoulos, “Transcoder Architectures for Video Coding,” IEEE Transactions on Consumer Electronics, Vol. 44, Issue 1, pp. 88-98, Feb. 1998.
[13] H. Schulzrinne, A. Rao and R. Lanphier, “Real Time Streaming Protocol (RTSP),” RFC 2326, Apr. 1998.
[14] X. Li, M. A. Salehi, M. Bayoumi, N. F. Tzeng, and R. Buyya, “Cost-Efficient and Robust On-Demand Video Transcoding Using Heterogeneous Cloud Services,” IEEE Transactions on Parallel and Distributed Systems, Vol. 29, Issue 3, pp. 556-571, Mar. 2018.
[15] H. Hadizadeh and I. V. Bajić, “Soft Video Multicasting Using Adaptive Compressed Sensing,” IEEE Transactions on Multimedia, Vol. 23, pp.12-25, Feb. 2020.
[16] D. Kobayashi, K. Nakamura, T. Osawa, Y. Omori, T. Onishi, and H. Iwasaki, “A Real-Time 4K HEVC Multi-Channel Encoding System with Content-Aware Bitrate Control,” 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, Dec. 9-13, 2019.
[17] G. Gao, Y. Wen, and C. Westphal, “Dynamic Priority-Based Resource Provisioning for Video Transcoding With Heterogeneous QoS,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 29, Issue 5, pp. 1515-1529, May 2019.
[18] A. T. Tran, N. N. Dao, and S. Cho, “Bitrate Adaptation for Video Streaming Services in Edge Caching Systems,” IEEE Access, Vol. 8, pp. 135844-135852, Jul. 2020.
[19] D. Ding, S. Ram, and J. J. Rodríguez, “Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering,” IEEE Transactions on Image Processing, Vol. 28, Issue 4, pp. 1705-1719, Apr. 2019.
[20] C. Guillemot and O. L. Meur, “Image Inpainting : Overview and Recent Advances,” IEEE Signal Processing Magazine, Vol. 31, Issue 1, pp. 127-144, Jan. 2014.
[21] A. Gilbert, M. Trumble, A. Hilton, and J. Collomosse, “Inpainting of Wide-Baseline Multiple Viewpoint Video,” IEEE Transactions on Visualization and Computer Graphics, Vol. 26, Issue 7, pp. 2417-2428, Jul. 2020.
[22] T. Bi, A. Pichon, L. Zou, S. Chen, G. Ghinea, and G. M. Muntean, “A DASH-based Mulsemedia Adaptive Delivery Solution,” Proceedings of the 10th International Workshop on Immersive Mixed and Virtual Environment Systems, Amsterdam, Netherlands, Jun. 12, 2018.
[23] A. Yaqoob, T. Bi, and G. M. Muntean, “A DASH-based Efficient Throughput and Buffer Occupancy-based Adaptation Algorithm for Smooth Multimedia Streaming,” 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, Jun. 24-28, 2019.
[24] B. Wei, H. Song, and J. Katto, “FRAB: A Flexible Relaxation Method for Fair, Stable, Efficient Multi-user DASH Video Streaming,” ICC 2021 - IEEE International Conference on Communications, Montreal, QC, Canada, Jun. 14-23, 2021.
[25] M. Alahmadi, P. Pocta, and H. Melvin, “An Adaptive Bitrate Switching Algorithm for Speech Applications in Context of WebRTC,” ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 17, Issue 4, pp. 1-21, Nov. 2021.
[26] C. B. Ameur, E. Mory, B. Cousin, and E. Dedu, “TcpHas: TCP for HTTP Adaptive Streaming,” 2017 IEEE International Conference on Communications (ICC), Paris, France, May 21-25, 2017.
[27] R. Viola, A. Martin, J. F. Mogollón, A. Gabilondo, J. Morgade, M. Zorrilla, J. Montalbán, and P. Angueira, “Adaptive Rate Control for Live Streaming using SRT Protocol,” 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Paris, France, Oct. 27-29, 2020.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-01-19
校外 Off-campus:開放下載的時間 available 2027-01-19

您的 IP(校外) 位址是 18.218.81.166
現在時間是 2024-05-12
論文校外開放下載的時間是 2027-01-19

Your IP address is 18.218.81.166
The current date is 2024-05-12
This thesis will be available to you on 2027-01-19.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2027-01-19

QR Code